Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 529(7585): 231-4, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26735012

RESUMO

Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.


Assuntos
DNA Catalítico/química , Conformação de Ácido Nucleico , Sequência de Bases , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , DNA Catalítico/síntese química , DNA Catalítico/metabolismo , Desoxirribose/química , Desoxirribose/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Nucleotídeos/química , Nucleotídeos/metabolismo , Polinucleotídeo Ligases/química , Polinucleotídeo Ligases/metabolismo , RNA/química , RNA/metabolismo , Dobramento de RNA , Especificidade por Substrato
2.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2570-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286842

RESUMO

Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Šresolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution.


Assuntos
Modelos Moleculares , RNA Polimerase I/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X , DNA/metabolismo , Conformação Proteica , Multimerização Proteica , RNA Polimerase I/genética , RNA Polimerase I/isolamento & purificação , RNA Polimerase I/metabolismo
3.
Nature ; 502(7473): 644-9, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24153184

RESUMO

Protein biosynthesis depends on the availability of ribosomes, which in turn relies on ribosomal RNA production. In eukaryotes, this process is carried out by RNA polymerase I (Pol I), a 14-subunit enzyme, the activity of which is a major determinant of cell growth. Here we present the crystal structure of Pol I from Saccharomyces cerevisiae at 3.0 Å resolution. The Pol I structure shows a compact core with a wide DNA-binding cleft and a tightly anchored stalk. An extended loop mimics the DNA backbone in the cleft and may be involved in regulating Pol I transcription. Subunit A12.2 extends from the A190 jaw to the active site and inserts a transcription elongation factor TFIIS-like zinc ribbon into the nucleotide triphosphate entry pore, providing insight into the role of A12.2 in RNA cleavage and Pol I insensitivity to α-amanitin. The A49-A34.5 heterodimer embraces subunit A135 through extended arms, thereby contacting and potentially regulating subunit A12.2.


Assuntos
Subunidades Proteicas/química , RNA Polimerase I/química , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Modelos Moleculares , Elongação Traducional da Cadeia Peptídica , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA Polimerase II/química , RNA Polimerase III/química , Transcrição Gênica
4.
Structure ; 19(1): 90-100, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21220119

RESUMO

RNA polymerases are essential enzymes which transcribe DNA into RNA. Here, we obtain mass spectra of the cellular forms of apo and holo eukaryotic RNA polymerase I and III, defining their composition under different solution conditions. By recombinant expression of subunits within the initiation heterotrimer of Pol III, we derive an interaction network and couple this data with ion mobility data to define topological restraints. Our data agree with available structural information and homology modeling and are generally consistent with yeast two hybrid data. Unexpectedly, elongation complexes of both Pol I and III destabilize the assemblies compared with their apo counterparts. Increasing the pH and ionic strength of apo and holo forms of Pol I and Pol III leads to formation of at least ten stable subcomplexes for both enzymes. Uniquely for Pol III many subcomplexes contain only one of the two largest catalytic subunits. We speculate that these stable subcomplexes represent putative intermediates in assembly pathways.


Assuntos
RNA Polimerase III/química , RNA Polimerase I/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Apoenzimas/química , Polidesoxirribonucleotídeos/química , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
EMBO J ; 29(22): 3762-72, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-20967027

RESUMO

RNA polymerase (Pol) III is responsible for the transcription of genes encoding small RNAs, including tRNA, 5S rRNA and U6 RNA. Here, we report the electron cryomicroscopy structures of yeast Pol III at 9.9 Å resolution and its elongation complex at 16.5 Å resolution. Particle sub-classification reveals prominent EM densities for the two Pol III-specific subcomplexes, C31/C82/C34 and C37/C53, that can be interpreted using homology models. While the winged-helix-containing C31/C82/C34 subcomplex initiates transcription from one side of the DNA-binding cleft, the C37/C53 subcomplex accesses the transcription bubble from the opposite side of this cleft. The transcribing Pol III enzyme structure not only shows the complete incoming DNA duplex, but also reveals the exit path of newly synthesized RNA. During transcriptional elongation, the Pol III-specific subcomplexes tightly enclose the incoming DNA duplex, which likely increases processivity and provides structural insights into the conformational switch between Pol III-mediated initiation and elongation.


Assuntos
RNA Polimerase III/química , Saccharomyces cerevisiae/enzimologia , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , RNA Polimerase III/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Homologia Estrutural de Proteína , Transcrição Gênica
6.
J Biol Chem ; 285(46): 35719-27, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20817737

RESUMO

Maf1, first identified in yeast Saccharomyces cerevisiae, is a general negative regulator of RNA polymerase III (Pol III). Transcription regulation by Maf1 is important under stress conditions and during the switch between fermentation and respiration. Maf1 is composed of two domains conserved during evolution. We report here that these two domains of human Maf1 are resistant to mild proteolysis and interact together as shown by pull-down and size-exclusion chromatography and that the comparable domains of yeast Maf1 interact in a two-hybrid assay. Additionally, in yeast, a mutation in the N-terminal domain is compensated by mutations in the C-terminal domain. Integrity of both domains and their direct interaction are necessary for Maf1 dephosphorylation and subsequent inhibition of Pol III transcription on a nonfermentable carbon source. These data relate Pol III transcription inhibition to Maf1 structural changes.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase III/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Northern Blotting , Células Cultivadas , Cromatografia em Gel , Humanos , Immunoblotting , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
7.
Nature ; 461(7264): 664-8, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19794495

RESUMO

A key step in many chromatin-related processes is the recognition of histone post-translational modifications by effector modules such as bromodomains and chromo-like domains of the Royal family. Whereas effector-mediated recognition of single post-translational modifications is well characterized, how the cell achieves combinatorial readout of histones bearing multiple modifications is poorly understood. One mechanism involves multivalent binding by linked effector modules. For example, the tandem bromodomains of human TATA-binding protein-associated factor-1 (TAF1) bind better to a diacetylated histone H4 tail than to monoacetylated tails, a cooperative effect attributed to each bromodomain engaging one acetyl-lysine mark. Here we report a distinct mechanism of combinatorial readout for the mouse TAF1 homologue Brdt, a testis-specific member of the BET protein family. Brdt associates with hyperacetylated histone H4 (ref. 7) and is implicated in the marked chromatin remodelling that follows histone hyperacetylation during spermiogenesis, the stage of spermatogenesis in which post-meiotic germ cells mature into fully differentiated sperm. Notably, we find that a single bromodomain (BD1) of Brdt is responsible for selectively recognizing histone H4 tails bearing two or more acetylation marks. The crystal structure of BD1 bound to a diacetylated H4 tail shows how two acetyl-lysine residues cooperate to interact with one binding pocket. Structure-based mutagenesis that reduces the selectivity of BD1 towards diacetylated tails destabilizes the association of Brdt with acetylated chromatin in vivo. Structural analysis suggests that other chromatin-associated proteins may be capable of a similar mode of ligand recognition, including yeast Bdf1, human TAF1 and human CBP/p300 (also known as CREBBP and EP300, respectively). Our findings describe a new mechanism for the combinatorial readout of histone modifications in which a single effector module engages two marks on a histone tail as a composite binding epitope.


Assuntos
Histonas/química , Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Acetilação , Regulação Alostérica , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , Lisina/metabolismo , Camundongos , Modelos Moleculares , Proteínas Nucleares/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
8.
EMBO J ; 28(13): 1965-77, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19494831

RESUMO

Polycomb group (PcG) proteins repress transcription by modifying chromatin structure in target genes. dSfmbt is a subunit of the Drosophila melanogaster PcG protein complex PhoRC and contains four malignant brain tumour (MBT) repeats involved in the recognition of various mono- and dimethylated histone peptides. Here, we present the crystal structure of the four-MBT-repeat domain of dSfmbt in complex with a mono-methylated histone H4 peptide. Only a single histone peptide binds to the four-MBT-repeat domain. Mutational analyses show high-affinity binding with low peptide sequence selectivity through combinatorial interaction of the methyl-lysine with an aromatic cage and positively charged flanking residues with the surrounding negatively charged surface of the fourth MBT repeat. dSfmbt directly interacts with the PcG protein Scm, a related MBT-repeat protein with similar methyl-lysine binding activity. dSfmbt and Scm co-occupy Polycomb response elements of target genes in Drosophila and they strongly synergize in the repression of these target genes, suggesting that the combined action of these two MBT proteins is crucial for Polycomb silencing.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/genética , Humanos , Lisina/química , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Alinhamento de Sequência
9.
EMBO Rep ; 8(11): 1031-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17932512

RESUMO

Sex comb on midleg (Scm) is a member of the Polycomb group of proteins involved in the maintenance of repression of Hox and other developmental control genes in Drosophila. The two malignant brain tumour (MBT) repeats of Scm form a domain that preferentially binds to monomethylated lysine residues either as a free amino acid or in the context of peptides, while unmodified or di- or trimethylated lysine residues are bound with significantly lower affinity. The crystal structure of a monomethyl-lysine-containing histone tail peptide bound to the MBT repeat domain shows that the methyl-lysine side chain occupies a binding pocket in the second MBT repeat formed by three conserved aromatic residues and one aspartate. Insertion of the monomethylated side chain into this pocket seems to be the main contributor to the binding affinity. Functional analyses in Drosophila show that the MBT domain of Scm and its methyl-lysine-binding activity are required for repression of Hox genes.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Lisina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Histonas/química , Histonas/genética , Histonas/metabolismo , Lisina/química , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/genética , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Alinhamento de Sequência , Transgenes
10.
Mol Cell ; 25(6): 813-23, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17386259

RESUMO

RNA polymerase III (RNAPIII) synthesizes tRNA, 5S RNA, U6 snRNA, and other small RNAs. The structure of yeast RNAPIII, determined at 17 A resolution by cryo-electron microscopy and single-particle analysis, reveals a hand-like shape typical of RNA polymerases. Compared to RNAPII, RNAPIII is characterized by a bulkier stalk and by prominent features extending from the DNA binding cleft. We attribute the latter primarily to five RNAPIII-specific subunits, present as two distinct subcomplexes (C82/C34/C31 and C53/C37). Antibody labeling experiments localize the C82/C34/C31 subcomplex to the clamp side of the DNA binding cleft, consistent with its known role in transcription initiation. The C53/C37 subcomplex appears to be situated across the cleft, near the presumed location of downstream DNA, accounting for its role in transcription termination. Our structure rationalizes available mutagenesis and biochemical data and provides insights into RNAPIII-mediated transcription.


Assuntos
RNA Polimerase III/genética , Saccharomyces cerevisiae/enzimologia , Sítio de Iniciação de Transcrição , Sítios de Ligação , Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , RNA Polimerase III/metabolismo , RNA Polimerase III/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
11.
Mol Cell ; 16(5): 761-75, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15574331

RESUMO

CRM1/Exportin1 mediates the nuclear export of proteins bearing a leucine-rich nuclear export signal (NES) by forming a cooperative ternary complex with the NES-bearing substrate and the small GTPase Ran. We present a structural model of human CRM1 based on a combination of X-ray crystallography, homology modeling, and electron microscopy. The architecture of CRM1 resembles that of the import receptor transportin1, with 19 HEAT repeats and a large loop implicated in Ran binding. Residues critical for NES recognition are identified adjacent to the cysteine residue targeted by leptomycin B (LMB), a specific CRM1 inhibitor. We present evidence that a conformational change of the Ran binding loop accounts for the cooperativity of Ran- and substrate binding and for the selective enhancement of CRM1-mediated export by the cofactor RanBP3. Our findings indicate that a single architectural and mechanistic framework can explain the divergent effects of RanGTP on substrate binding by many import and export receptors.


Assuntos
Núcleo Celular/metabolismo , Carioferinas/química , Receptores Citoplasmáticos e Nucleares/química , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ácidos Graxos Insaturados/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/química , Humanos , Processamento de Imagem Assistida por Computador , Carioferinas/metabolismo , Leucina/química , Microscopia Eletrônica , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Homologia de Sequência de Aminoácidos , beta Carioferinas/química , Proteína ran de Ligação ao GTP/metabolismo , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...