Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 879: 163041, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965738

RESUMO

Pesticides from urban and agricultural runoff have been detected at concentrations above current water quality guidelines in the Great Barrier Reef (GBR) marine environment. We quantify the load of the pesticide diuron entering GBR waters using the GBR-Dynamic SedNet catchment model. After comparison of simulated distributions with observations at 11 monitoring sites we determined a half-life of diuron in GBR marine waters of 40 days. We followed diuron dispersal in the GBR (2016-2018) using the 1 km resolution eReefs marine model. The highest diuron concentrations in GBR waters occurred in the Mackay-Whitsunday region with a spike in January and March 2017, associated with 126 and 118 kg d-1 diuron loads from Plane Creek and the O'Connell River respectively. We quantify areas of GBR waters exposed to potentially ecotoxic concentrations of diuron. Between 2016 and 2018, 400 km2 and 1400 km2 of the GBR were exposed to concentrations exceeding ecosystem threshold values of 0.43 and 0.075 µg L-1 respectively. Using observed mapped coral and seagrass habitat, 175 km2 of seagrass beds and 50 km2 of coral habitats had peak diuron concentrations above 0.075 µg L-1 during this period. While the highest concentrations are localised to river plumes and inshore environments, non-zero diuron concentrations extend along the Queensland coast. These simulations provide new knowledge for the understanding of pesticide dispersal and management-use in GBR catchments and the design of in-water monitoring systems.


Assuntos
Praguicidas , Poluentes Químicos da Água , Ecossistema , Recifes de Corais , Diurona , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 781: 146526, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33798899

RESUMO

Traditional environmental monitoring techniques are well suited to resolving acute exposure effects but lack resolution in determining subtle shifts in ecosystem functions resulting from chronic exposure(s). Surveillance with sensitive omics-based technologies could bridge this gap but, to date, most omics-based environmental studies have focused on previously degraded environments, identifying key metabolic differences resulting from anthropogenic perturbations. Here, we apply omics-based approaches to pristine environments to establish blueprints of microbial functionality within healthy estuarine sediment communities. We collected surface sediments (n = 50) from four pristine estuaries along the Western Cape York Peninsula of Far North Queensland, Australia. Sediment microbiomes were analyzed for 16S rRNA amplicon sequences, central carbon metabolism metabolites and associated secondary metabolites via targeted and untargeted metabolic profiling methods. Multivariate statistical analyses indicated heterogeneity among all the sampled estuaries, however, taxa-function relationships could be established that predicted community metabolism potential. Twenty-four correlated gene-metabolite pathways were identified and used to establish sediment microbial blueprints of essential carbon metabolism and amino acid biosynthesis that were positively correlated with community metabolic function outputs (2-oxisocapraote, tryptophan, histidine citrulline and succinic acid). In addition, an increase in the 125 KEGG genes related to metal homeostasis and metal resistance was observed, although, none of the detected metabolites related to these specific genes upon integration. However, there was a correlation between metal abundance and functional genes related to Fe and Zn metabolism. Our results establish a baseline microbial blueprint for the pristine sediment microbiome, one that drives important ecosystem services and to which future ecosurveillance monitoring can be compared.

3.
Curr Biol ; 30(24): R1500-R1510, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33352137

RESUMO

The United Nations General Assembly calls for ecosystem restoration to be a primary intervention strategy used to counter the continued loss of natural habitats worldwide, while supporting human health and wellbeing globally. Restoration of coastal marine ecosystems is perceived by many to be expensive and prone to failure, in part explaining its low rates of implementation compared with terrestrial ecosystems. Yet, marine ecosystem restoration is a relatively new field, and we argue that assessments of its potential to answer this call should not rely on typical outcomes, but also to learn from successful outliers. Here, we review successful restoration efforts across a suite of metrics in coastal marine systems to highlight 'bright spots'. We find that, similar to terrestrial systems, restoration interventions can be effective over large spatial expanses (1,000s-100,000s ha), persist for decades, rapidly expand in size, be cost-effective, and generate social and economic benefits. These bright spots clearly demonstrate restoration of coastal marine systems can be used as a nature-based solution to improve biodiversity and support human health and wellbeing. Examining coastal marine restoration through a historical lens shows that it has developed over a shorter period than restoration in terrestrial systems, partially explaining lower efficiencies. Given these bright spots and the relative immaturity of coastal marine ecosystem restoration, it is likely to advance rapidly over the coming decades and become a common intervention strategy that can reverse marine degradation, contribute to local economies, and improve human wellbeing at a scale relevant to addressing global threats.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental/métodos , Saúde Global , Oceanos e Mares , Humanos
4.
Microorganisms ; 7(10)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590307

RESUMO

Rapid urban expansion and increased human activities have led to the progressive deterioration of many marine ecosystems. The diverse microbial communities that inhabit these ecosystems are believed to influence large-scale geochemical processes and, as such, analyzing their composition and functional metabolism can be a means to assessing an ecosystem's resilience to physical and chemical perturbations, or at the very least provide baseline information and insight into future research needs. Here we show the utilization of organic and inorganic contaminant screening coupled with metabolomics and bacterial 16S rRNA gene sequencing to assess the microbial community structure of marine sediments and their functional metabolic output. The sediments collected from Moreton Bay (Queensland, Australia) contained low levels of organic and inorganic contaminants, typically below guideline levels. The sequencing dataset suggest that sulfur and nitrite reduction, dehalogenation, ammonia oxidation, and xylan degradation were the major metabolic functions. The community metabolites suggest a level of functional homogeneity down the 40-cm core depth sampled, with sediment habitat identified as a significant driver for metabolic differences. The communities present in river and sandy channel samples were found to be the most active, with the river habitats likely to be dominated by photoheterotrophs that utilized carbohydrates, fatty acids and alcohols as well as reduce nitrates to release atmospheric nitrogen and oxidize sulfur. Bioturbated mud habitats showed overlapping faunal activity between riverine and sandy ecosystems. Nitrogen-fixing bacteria and lignin-degrading bacteria were most abundant in the sandy channel and bioturbated mud, respectively. The use of omics-based approaches provide greater insight into the functional metabolism of these impacted habitats, extending beyond discrete monitoring to encompassing whole community profiling that represents true phenotypical outputs. Ongoing omics-based monitoring that focuses on more targeted pathway analyses is recommended in order to quantify the flux changes within these systems and establish variations from these baseline measurements.

5.
PLoS One ; 9(11): e112161, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426626

RESUMO

Coral reef calcification is predicted to decline as a result of ocean acidification and other anthropogenic stressors. The majority of studies predicting declines based on in situ relationships between environmental parameters and net community calcification rate have been location-specific, preventing accurate predictions for coral reefs globally. In this study, net community calcification and production were measured on a coral reef flat at One Tree Island, Great Barrier Reef, using Lagrangian flow respirometry and slack water methods. Net community calcification, daytime net photosynthesis and nighttime respiration were higher under the flow respirometry method, likely due to increased water flow relative to the slack water method. The two methods also varied in the degrees to which they were influenced by potential measurement uncertainties. The difference in the results from these two commonly used methods implies that some of the location-specific differences in coral reef community metabolism may be due to differences in measurement methods.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica , Dióxido de Carbono/análise , Água do Mar/química , Animais , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Recifes de Corais , Hidrodinâmica , Concentração de Íons de Hidrogênio , Fotossíntese/fisiologia
6.
Adv Mar Biol ; 66: 1-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24182899

RESUMO

Irukandji stings are a leading occupational health and safety issue for marine industries in tropical Australia and an emerging problem elsewhere in the Indo-Pacific and Caribbean. Their mild initial sting frequently results in debilitating illness, involving signs of sympathetic excess including excruciating pain, sweating, nausea and vomiting, hypertension and a feeling of impending doom; some cases also experience acute heart failure and pulmonary oedema. These jellyfish are typically small and nearly invisible, and their infestations are generally mysterious, making them scary to the general public, irresistible to the media, and disastrous for tourism. Research into these fascinating species has been largely driven by the medical profession and focused on treatment. Biological and ecological information is surprisingly sparse, and is scattered through grey literature or buried in dispersed publications, hampering understanding. Given that long-term climate forecasts tend toward conditions favourable to jellyfish ecology, that long-term legal forecasts tend toward increasing duty-of-care obligations, and that bioprospecting opportunities exist in the powerful Irukandji toxins, there is a clear need for information to help inform global research and robust management solutions. We synthesise and contextualise available information on Irukandji taxonomy, phylogeny, reproduction, vision, behaviour, feeding, distribution, seasonality, toxins, and safety. Despite Australia dominating the research in this area, there are probably well over 25 species worldwide that cause the syndrome and it is an understudied problem in the developing world. Major gaps in knowledge are identified for future research: our lack of clarity on the socio-economic impacts, and our need for time series and spatial surveys of the species, make this field particularly enticing.


Assuntos
Cubomedusas/anatomia & histologia , Cubomedusas/fisiologia , Animais , Praias , Comportamento Animal , Mordeduras e Picadas/patologia , Mordeduras e Picadas/prevenção & controle , Venenos de Cnidários/toxicidade , Cubomedusas/genética , Demografia , Ecossistema , Humanos , Filogenia , Toxinas Biológicas
7.
Mar Pollut Bull ; 51(1-4): 113-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15757713

RESUMO

We present an overview of a portable underway water quality monitoring system (RUM-Rapid Underway Monitoring), developed by integrating several off-the-shelf water quality instruments to provide rapid, comprehensive, and spatially referenced 'snapshots' of water quality conditions. We demonstrate the utility of the system from studies in the Northern Great Barrier Reef (Daintree River) and the Moreton Bay region. The Brisbane dataset highlights RUM's utility in characterising plumes as well as its ability to identify the smaller scale structure of large areas. RUM is shown to be particularly useful when measuring indicators with large small-scale variability such as turbidity and chlorophyll-a. Additionally, the Daintree dataset shows the ability to integrate other technologies, resulting in a more comprehensive analysis, whilst sampling offshore highlights some of the analytical issues required for sampling low concentration data. RUM is a low cost, highly flexible solution that can be modified for use in any water type, on most vessels and is only limited by the available monitoring technologies.


Assuntos
Monitoramento Ambiental/métodos , Poluentes da Água/análise , Animais , Antozoários , Automação , Ecossistema , Controle de Qualidade , Queensland , Valores de Referência , Navios , Tecnologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...