Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38772705

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric embryonal solid tumor and the most common pediatric soft tissue sarcoma. The histology and transcriptome of RMS resemble skeletal muscle progenitor cells that have failed to terminally differentiate. Thus, RMS is typically thought to arise from corrupted skeletal muscle progenitor cells during development. However, RMS can occur in body regions devoid of skeletal muscle, suggesting the potential for nonmyogenic cells of origin. Here, we discuss the interplay between RMS driver mutations and cell(s) of origin with an emphasis on driving location specificity. Additionally, we discuss the mechanisms governing RMS transformation events and tumor heterogeneity through the lens of transcriptional networks and epigenetic control. Finally, we reimagine Waddington's developmental landscape to include a plane of transformation connecting distinct lineage landscapes to more accurately reflect the phenomena observed in pediatric cancers.

2.
Nat Commun ; 14(1): 7291, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968277

RESUMO

Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Animais , Criança , Humanos , Camundongos , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica , Músculo Esquelético/metabolismo , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Rabdomiossarcoma Alveolar/genética
3.
R Soc Open Sci ; 9(9): 220358, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177203

RESUMO

A series of cystargolide-based ß-lactone analogues containing nitrogen atoms at the Pz portion of the scaffold were prepared and evaluated as proteasome inhibitors, and for their cytotoxicity profile toward several cancer cell lines. Inclusion of one, two or even three nitrogen atoms at the Pz portion of the cystargolide scaffold is well tolerated, producing analogues with low nanomolar proteasome inhibition activity, in many cases superior to carfilzomib. Additionally, analogue 8g, containing an ester and pyrazine group at Pz, was shown to possess significant activity toward RPMI 8226 cells (IC50 = 21 nM) and to be less cytotoxic toward the normal tissue model MCF10A cells than carfilzomib.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...