Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(20): 11277-11295, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144964

RESUMO

Seasonal and annual climate variations are linked to fluctuations in the abundance and distribution of resources, posing a significant challenge to animals that need to adjust their foraging behavior accordingly. Particularly during adverse conditions, and while energetically constrained when breeding, animals ideally need to be flexible in their foraging behavior. Such behavioral plasticity may separate "winners" from "losers" in light of rapid environmental changes due to climate change. Here, the foraging behavior of four sub-Antarctic albatross species was investigated from 2015/16 to 2017/18, a period characterized by pronounced environmental variability. Over three breeding seasons on Marion Island, Prince Edward Archipelago, incubating wandering (WA, Diomedea exulans; n = 45), grey-headed (GHA, Thalassarche chrysostoma; n = 26), sooty (SA, Phoebetria fusca; n = 23), and light-mantled (LMSA, P. palpebrata; n = 22) albatrosses were tracked with GPS loggers. The response of birds to environmental variability was investigated by quantifying interannual changes in their foraging behavior along two axes: spatial distribution, using kernel density analysis, and foraging habitat preference, using generalized additive mixed models and Bayesian mixed models. All four species were shown to respond behaviorally to environmental variability, but with substantial differences in their foraging strategies. WA was most general in its habitat use defined by sea surface height, eddy kinetic energy, wind speed, ocean floor slope, and sea-level anomaly, with individuals foraging in a range of habitats. In contrast, the three smaller albatrosses exploited two main foraging habitats, with habitat use varying between years. Generalist habitat use by WA and interannually variable use of habitats by GHA, SA, and LMSA would likely offer these species some resilience to predicted changes in climate such as warming seas and strengthening of westerly winds. However, future investigations need to consider other life-history stages coupled with demographic studies, to better understand the link between behavioral plasticity and population responses.

2.
Int J Parasitol Parasites Wildl ; 7(2): 155-160, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29988875

RESUMO

The Prince Edward Islands are Subantarctic islands in the southwest Indian Ocean that are of global importance as seabird nesting sites, and are breeding grounds for five species of albatrosses (Procellariiformes: Diomedeidae). In March-April 2016 numerous chicks of one of these species, the grey-headed albatross (Thalassarche chrysostoma), were found dead at colonies on Marion Island (46°57'S 37°42'E), the larger of the two Prince Edward Islands. Affected chicks were weak, prostrated, apathetic, had drooping wings, and many eventually died while sitting on the nest. Five carcasses were necropsied, and samples were obtained for pathological and parasitological analysis. Four chicks appeared to have died from starvation, and one died due to air-sac helminthiasis, with extensive hemorrhage in the air sacs and multifocal pyogranulomatous air-sacculitis. The air sac parasites were identified as Diomedenema diomedeae (Aproctoidea: Desmidocercidae). Phylogenetic analysis of the nuclear 18S rRNA gene and mitochondrial COI gene confirmed that D. diomedeae belongs to the suborder Spirurina and showed that it is most closely related to the Diplotriaenidae (superfamily Diplotriaenoidea), a family of parasites that infect the air sacs and subcutaneous tissues of a variety of bird species. To our knowledge this is the first record of the occurrence of a nematode in the respiratory tract of an albatross and the first study to provide DNA sequences for a species of the superfamily Aproctoidea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA