Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 164: 213959, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39083876

RESUMO

Biomaterial-based approaches for bone regeneration seek to explore alternative strategies to repair non-healing fractures and critical-sized bone defects. Fracture non-union occurs due to a number of factors resulting in the formation of bone defects. Rigorous evaluation of the biomaterials in relevant models and assessment of their potential to translate towards clinical use is vital. Large animal experimentation can be used to model fracture non-union while scaling-up materials for clinical use. Growth factors modulate cell phenotype, behaviour and initiate signalling pathways leading to changes in matrix deposition and tissue formation. Bone morphogenetic protein-2 (BMP-2) is a potent osteogenic growth factor, with a rapid clearance time in vivo necessitating clinical use at a high dose, with potential deleterious side-effects. The current studies have examined the potential for Laponite® nanoclay coated poly(caprolactone) trimethacrylate (PCL-TMA900) scaffolds to bind BMP-2 for enhanced osteoinduction in a large animal critical-sized bone defect. An ovine femoral condyle defect model confirmed PCL-TMA900 scaffolds coated with Laponite®/BMP-2 produced significant bone formation compared to the uncoated PCL-TMA 900 scaffold in vivo, assessed by micro-computed tomography (µCT) and histology. This indicated the ability of Laponite® to deliver the bioactive BMP-2 on the PCL-TMA900 scaffold. Bone formed around the Laponite®/BMP-2 coated PCL-TMA900 scaffold, with no erroneous bone formation observed away from the scaffold material confirming localisation of BMP-2 delivery. The current studies demonstrate the ability of a nanoclay to localise and deliver bioactive BMP-2 within a tailored octet-truss scaffold for efficacious bone defect repair in a large animal model with significant implications for translation to the clinic.

2.
Adv Healthc Mater ; : e2400419, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748937

RESUMO

Many cardiac diseases, such as arrhythmia or cardiogenic shock, cause irregular beating patterns that must be regulated to prevent disease progression toward heart failure. Treatments can include invasive surgery or high systemic drug dosages, which lack precision, localization, and control. Drug delivery systems (DDSs) that can deliver cargo to the cardiac injury site could address these unmet clinical challenges. Here, a microrobotic DDS that can be mobilized to specific sites via magnetic control is presented. This DDS incorporates an internal chamber that can protect drug cargo. Furthermore, the DDS contains a tunable thermosensitive sealing layer that gradually degrades upon exposure to body temperature, enabling prolonged drug release. Once loaded with the small molecule drug norepinephrine, this microrobotic DDS modulated beating frequency in induced pluripotent stem-cell derived cardiomyocytes (iPSC-CMs) in a dose-dependent manner, thus simulating drug delivery to cardiac cells in vitro. The DDS also navigates several maze-like structures seeded with cardiomyocytes to demonstrate precise locomotion under a rotating low-intensity magnetic field and on-site drug delivery. This work demonstrates the utility of a magnetically actuating DDS for precise, localized, and controlled drug delivery which is of interest for a myriad of future opportunities such as in treating cardiac diseases.

3.
Anal Chem ; 96(21): 8492-8500, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38747470

RESUMO

Raman spectroscopy is a nondestructive and label-free chemical analysis technique, which plays a key role in the analysis and discovery cycle of various branches of science. Nonetheless, progress in Raman spectroscopic analysis is still impeded by the lack of software, methodological and data standardization, and the ensuing fragmentation and lack of reproducibility of analysis workflows thereof. To address these issues, we introduce RamanSPy, an open-source Python package for Raman spectroscopic research and analysis. RamanSPy provides a comprehensive library of tools for spectroscopic analysis that supports day-to-day tasks, integrative analyses, the development of methods and protocols, and the integration of advanced data analytics. RamanSPy is modular and open source, not tied to a particular technology or data format, and can be readily interfaced with the burgeoning ecosystem for data science, statistical analysis, and machine learning in Python. RamanSPy is hosted at https://github.com/barahona-research-group/RamanSPy, supplemented with extended online documentation, available at https://ramanspy.readthedocs.io, that includes tutorials, example applications, and details about the real-world research applications presented in this paper.

4.
Chem Mater ; 36(7): 3092-3106, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617802

RESUMO

Ionic charge transport is a ubiquitous language of communication in biological systems. As such, bioengineering is in constant need of innovative, soft, and biocompatible materials that facilitate ionic conduction. Low molecular weight gelators (LMWGs) are complex self-assembled materials that have received increasing attention in recent years. Beyond their biocompatible, self-healing, and stimuli responsive facets, LMWGs can be viewed as a "solid" electrolyte solution. In this work, we investigate 3,4-ethylenedioxythiophene (EDOT) as a capping group for a small peptide library, which we use as a system to understand the relationship between modes of assembly and charge transport in supramolecular gels. Through a combination of techniques including small-angle neutron scattering (SANS), NMR-based Van't Hoff analysis, atomic force microscopy (AFM), rheology, four-point probe, and electrochemical impedance spectroscopy (EIS), we found that modifications to the peptide sequence result in distinct assembly pathways, thermodynamic parameters, mechanical properties, and ionic conductivities. Four-point probe conductivity measurements and electrochemical impedance spectroscopy suggest that ionic conductivity is approximately doubled by programmable gel assemblies with hollow cylinder morphologies relative to gels containing solid fibers or a control electrolyte. More broadly, it is hoped this work will serve as a platform for those working on charge transport of aqueous soft materials in general.

5.
Nano Converg ; 11(1): 15, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634994

RESUMO

Nanomedicine has been extensively explored for therapeutic and diagnostic applications in recent years, owing to its numerous advantages such as controlled release, targeted delivery, and efficient protection of encapsulated agents. Integration of microneedle technologies with nanomedicine has the potential to address current limitations in nanomedicine for drug delivery including relatively low therapeutic efficacy and poor patient compliance and enable theragnostic uses. In this Review, we first summarize representative types of nanomedicine and describe their broad applications. We then outline the current challenges faced by nanomedicine, with a focus on issues related to physical barriers, biological barriers, and patient compliance. Next, we provide an overview of microneedle systems, including their definition, manufacturing strategies, drug release mechanisms, and current advantages and challenges. We also discuss the use of microneedle-mediated nanomedicine systems for therapeutic and diagnostic applications. Finally, we provide a perspective on the current status and future prospects for microneedle-mediated nanomedicine for biomedical applications.

6.
Biomacromolecules ; 25(5): 2965-2972, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38682378

RESUMO

Nucleic acid therapeutics have attracted recent attention as promising preventative solutions for a broad range of diseases. Nonviral delivery vectors, such as cationic polymers, improve the cellular uptake of nucleic acids without suffering the drawbacks of viral delivery vectors. However, these delivery systems are faced with a major challenge for worldwide deployment, as their poor thermal stability elicits the need for cold chain transportation. Here, we demonstrate a biomaterial strategy to drastically improve the thermal stability of DNA polyplexes. Importantly, we demonstrate long-term room temperature storage with a transfection efficiency maintained for at least 9 months. Additionally, extreme heat shock studies show retained luciferase expression after heat treatment at 70 °C. We therefore provide a proof of concept for a platform biotechnology that could provide long-term room temperature storage for temperature-sensitive nucleic acid therapeutics, eliminating the need for the cold chain, which in turn would reduce the cost of distributing life-saving therapeutics worldwide.


Assuntos
DNA , Humanos , DNA/química , Transfecção/métodos , Polímeros/química , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura , Temperatura Alta
7.
Trends Biotechnol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38664141

RESUMO

The field of biofabrication is rapidly expanding with the advent of new technologies and material systems to engineer complex tissues. In this opinion article, we introduce an emerging tissue patterning method, physical-property-based patterning, that has strong translational potential given its simplicity and limited dependence on external hardware. Physical-property-based patterning relies solely on the intrinsic density, magnetic susceptibility, or compressibility of an object, its surrounding solution, and the noncontact application of a remote field. We discuss how physical properties can be exploited to pattern objects and design a variety of biologic tissues. Finally, we pose several open questions that, if addressed, could transform the status quo of biofabrication, pushing us one step closer to patterning tissues in situ.

8.
J Extracell Vesicles ; 13(3): e12419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443328

RESUMO

Extracellular vesicles (EVs), including exosomes and microvesicles, mediate intercellular communication in cancer, from development to metastasis. EV-based liquid biopsy is a promising strategy for cancer diagnosis as EVs can be found in cancer patients' body fluids. In this study, the lipid composition of breast cancer-derived EVs was studied as well as the potential of blood plasma EVs for the identification of lipid biomarkers for breast cancer detection. Initially, an untargeted lipidomic analysis was carried out for a panel of cancerous and non-cancerous mammary epithelial cells and their secreted EVs. We found that breast cancer-derived EVs are enriched in sphingolipids and glycerophospholipids compared to their parental cells. The initial in vitro study showed that EVs and their parental cells can be correctly classified (100% accuracy) between cancerous and non-cancerous, as well as into their respective breast cancer subtypes, based on their lipid composition. Subsequently, an untargeted lipidomic analysis was carried out for blood plasma EVs from women diagnosed with breast cancer (primary or progressive metastatic breast cancer) as well as healthy women. Correspondingly, when blood plasma EVs were analysed, breast cancer patients and healthy women were correctly classified with an overall accuracy of 93.1%, based on the EVs' lipid composition. Similarly, the analysis of patients with primary breast cancer and healthy women showed an overall accuracy of 95% for their correct classification. Furthermore, primary and metastatic breast cancers were correctly classified with an overall accuracy of 89.5%. This reveals that the blood plasma EVs' lipids may be a promising source of biomarkers for detection of breast cancer. Additionally, this study demonstrates the usefulness of untargeted lipidomics in the study of EV lipid composition and EV-associated biomarker discovery studies. This is a proof-of-concept study and a starting point for further analysis on the identification of EV-based biomarkers for breast cancer.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Plasma , Biomarcadores , Glicerofosfolipídeos
9.
ArXiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463498

RESUMO

With the rise in engineered biomolecular devices, there is an increased need for tailor-made biological sequences. Often, many similar biological sequences need to be made for a specific application meaning numerous, sometimes prohibitively expensive, lab experiments are necessary for their optimization. This paper presents a transfer learning design of experiments workflow to make this development feasible. By combining a transfer learning surrogate model with Bayesian optimization, we show how the total number of experiments can be reduced by sharing information between optimization tasks. We demonstrate the reduction in the number of experiments using data from the development of DNA competitors for use in an amplification-based diagnostic assay. We use cross-validation to compare the predictive accuracy of different transfer learning models, and then compare the performance of the models for both single objective and penalized optimization tasks.

10.
Angew Chem Int Ed Engl ; 63(14): e202314786, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38438780

RESUMO

Due to the variety of roles served by the cell membrane, its composition and structure are complex, making it difficult to study. Bioorthogonal reactions, such as the strain promoted azide-alkyne cycloaddition (SPAAC), are powerful tools for exploring the function of biomolecules in their native environment but have been largely unexplored within the context of lipid bilayers. Here, we developed a new approach to study the SPAAC reaction in liposomal membranes using azide- and strained alkyne-functionalized Förster resonance energy transfer (FRET) dye pairs. This study represents the first characterization of the SPAAC reaction between diffusing molecules inside liposomal membranes. Potential applications of this work include in situ bioorthogonal labeling of membrane proteins, improved understanding of membrane dynamics and fluidity, and the generation of new probes for biosensing assays.


Assuntos
Bicamadas Lipídicas , Lipossomos , Lipossomos/química , Reação de Cicloadição , Azidas/química , Alcinos/química
11.
Nat Commun ; 15(1): 1040, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310090

RESUMO

Counterfeiting has become a serious global problem, causing worldwide losses and disrupting the normal order of society. Physical unclonable functions are promising hardware-based cryptographic primitives, especially those generated by chemical processes showing a massive challenge-response pair space. However, current chemical-based physical unclonable function devices typically require complex fabrication processes or sophisticated characterization methods with only binary (bit) keys, limiting their practical applications and security properties. Here, we report a flexible laser printing method to synthesize unclonable electronics with high randomness, uniqueness, and repeatability. Hexadecimal resistive keys and binary optical keys can be obtained by the challenge with an ohmmeter and an optical microscope. These readout methods not only make the identification process available to general end users without professional expertise, but also guarantee device complexity and data capacity. An adopted open-source deep learning model guarantees precise identification with high reliability. The electrodes and connection wires are directly printed during laser writing, which allows electronics with different structures to be realized through free design. Meanwhile, the electronics exhibit excellent mechanical and thermal stability. The high physical unclonable function performance and the widely accessible readout methods, together with the flexibility and stability, make this synthesis strategy extremely attractive for practical applications.

12.
Sci Adv ; 10(5): eadl1549, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306430

RESUMO

3D soft bioscaffolds have great promise in tissue engineering, biohybrid robotics, and organ-on-a-chip engineering applications. Though emerging three-dimensional (3D) printing techniques offer versatility for assembling soft biomaterials, challenges persist in overcoming the deformation or collapse of delicate 3D structures during fabrication, especially for overhanging or thin features. This study introduces a magnet-assisted fabrication strategy that uses a magnetic field to trigger shape morphing and provide remote temporary support, enabling the straightforward creation of soft bioscaffolds with overhangs and thin-walled structures in 3D. We demonstrate the versatility and effectiveness of our strategy through the fabrication of bioscaffolds that replicate the complex 3D topology of branching vascular systems. Furthermore, we engineered hydrogel-based bioscaffolds to support biohybrid soft actuators capable of walking motion triggered by cardiomyocytes. This approach opens new possibilities for shaping hydrogel materials into complex 3D morphologies, which will further empower a broad range of biomedical applications.


Assuntos
Robótica , Engenharia Tecidual , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Hidrogéis/química , Impressão Tridimensional
13.
Adv Mater ; 36(19): e2312135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38290081

RESUMO

Soft actuators (SAs) are devices which can interact with delicate objects in a manner not achievable with traditional robotics. While it is possible to design a SA whose actuation is triggered via an external stimulus, the use of a single stimulus creates challenges in the spatial and temporal control of the actuation. Herein, a 4D printed multimaterial soft actuator design (MMSA) whose actuation is only initiated by a combination of triggers (i.e., pH and temperature) is presented. Using 3D printing, a multilayered soft actuator with a hydrophilic pH-sensitive layer, and a hydrophobic magnetic and temperature-responsive shape-memory polymer layer, is designed. The hydrogel responds to environmental pH conditions by swelling or shrinking, while the shape-memory polymer can resist the shape deformation of the hydrogel until triggered by temperature or light. The combination of these stimuli-responsive layers allows for a high level of spatiotemporal control of the actuation. The utility of the 4D MMSA is demonstrated via a series of cargo capture and release experiments, validating its ability to demonstrate active spatiotemporal control. The MMSA concept provides a promising research direction to develop multifunctional soft devices with potential applications in biomedical engineering and environmental engineering.

14.
ACS Infect Dis ; 10(2): 732-745, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271991

RESUMO

Severe malaria is a life-threatening condition that is associated with a high mortality. Severe Plasmodium falciparum infections are mediated primarily by high parasitemia and binding of infected red blood cells (iRBCs) to the blood vessel endothelial layer, a process known as sequestration. Here, we show that including the 5-amino-2-methoxybenzenesulfonate (AMBS) chemical modification in soluble biopolymers (polyglutamic acid and heparin) and poly(acrylic acid)-exposing nanoparticles serves as a universal tool to introduce a potent parasite invasion inhibitory function in these materials. Importantly, the modification did not add or eliminated (for heparin) undesired anticoagulation activity. The materials protected RBCs from invasion by various parasite strains, employing both major entry pathways. Two further P. falciparum strains, which either expose ligands for chondroitin sulfate A (CSA) or intercellular adhesion molecule 1 (ICAM-1) on iRBCs, were tested in antisequestration assays due to their relevance in placental and cerebral malaria, respectively. Antisequestration activity was found to be more efficacious with nanoparticles vs gold-standard soluble biopolymers (CSA and heparin) against both strains, when tested on receptor-coated dishes. The nanoparticles also efficiently inhibited and reversed the sequestration of iRBCs on endothelial cells. First, the materials described herein have the potential to reduce the parasite burden by acting at the key multiplication stage of reinvasion. Second, the antisequestration ability could help remove iRBCs from the blood vessel endothelium, which could otherwise cause vessel obstruction, which in turn can lead to multiple organ failure in severe malaria infections. This approach represents a further step toward creation of adjunctive therapies for this devastating condition to reduce morbidity and mortality.


Assuntos
Antimaláricos , Malária Cerebral , Feminino , Humanos , Gravidez , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Placenta , Células Endoteliais , Biopolímeros/metabolismo , Heparina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA