Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Appl Environ Microbiol ; 90(1): e0142823, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38099657

RESUMO

Wastewater-based epidemiology (WBE) expanded rapidly in response to the COVID-19 pandemic. As the public health emergency has ended, researchers and practitioners are looking to shift the focus of existing wastewater surveillance programs to other targets, including bacteria. Bacterial targets may pose some unique challenges for WBE applications. To explore the current state of the field, the National Science Foundation-funded Research Coordination Network (RCN) on Wastewater Based Epidemiology for SARS-CoV-2 and Emerging Public Health Threats held a workshop in April 2023 to discuss the challenges and needs for wastewater bacterial surveillance. The targets and methods used in existing programs were diverse, with twelve different targets and nine different methods listed. Discussions during the workshop highlighted the challenges in adapting existing programs and identified research gaps in four key areas: choosing new targets, relating bacterial wastewater data to human disease incidence and prevalence, developing methods, and normalizing results. To help with these challenges and research gaps, the authors identified steps the larger community can take to improve bacteria wastewater surveillance. This includes developing data reporting standards and method optimization and validation for bacterial programs. Additionally, more work is needed to understand shedding patterns for potential bacterial targets to better relate wastewater data to human infections. Wastewater surveillance for bacteria can help provide insight into the underlying prevalence in communities, but much work is needed to establish these methods.IMPORTANCEWastewater surveillance was a useful tool to elucidate the burden and spread of SARS-CoV-2 during the pandemic. Public health officials and researchers are interested in expanding these surveillance programs to include bacterial targets, but many questions remain. The NSF-funded Research Coordination Network for Wastewater Surveillance of SARS-CoV-2 and Emerging Public Health Threats held a workshop to identify barriers and research gaps to implementing bacterial wastewater surveillance programs.


Assuntos
Objetivos , Pandemias , Humanos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Bactérias , SARS-CoV-2
2.
Microorganisms ; 11(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37764037

RESUMO

During the COVID-19 pandemic, wastewater surveillance was widely used to monitor temporal and geographical infection trends. Using this as a foundation, a statewide program for routine wastewater monitoring of gastrointestinal pathogens was established in Oklahoma. The results from 18 months of surveillance showed that wastewater concentrations of Salmonella, Campylobacter, and norovirus exhibit similar seasonal patterns to those observed in reported human cases (F = 4-29, p < 0.05) and that wastewater can serve as an early warning tool for increases in cases, offering between one- and two-weeks lead time. Approximately one third of outbreak alerts in wastewater correlated in time with confirmed outbreaks of Salmonella or Campylobacter and our results further indicated that several outbreaks are likely to go undetected through the traditional surveillance approach currently in place. Better understanding of the true distribution and burden of gastrointestinal infections ultimately facilitates better disease prevention and control and reduces the overall socioeconomic and healthcare related impact of these pathogens. In this respect, wastewater represents a unique opportunity for monitoring infections in real-time, without the need for individual human testing. With increasing demands for sustainable and low-cost disease surveillance, the usefulness of wastewater as a long-term method for tracking infectious disease transmission is likely to become even more pronounced.

3.
Protein Eng Des Sel ; 352022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36191061

RESUMO

Steroid sulfate esters are important metabolites for anti-doping efforts in sports, pathology and research. Analysis of these metabolites is facilitated by hydrolysis using either acid or enzymatic catalysis. Although enzymatic hydrolysis is preferred for operating at neutral pH, no known enzyme is capable of hydrolyzing all steroid sulfate metabolites. Pseudomonas aeruginosa arylsulfatase (PaS) is ideal for the hydrolysis of ß-configured steroid sulfates but like other known class I sulfatases it is inefficient at hydrolyzing α-configured steroid sulfates. We have used directed evolution with liquid chromatography mass spectrometry screening to find variants capable of hydrolyzing a α-configured steroid sulfate: etiocholanolone sulfate (ECS). After targeting two regions of PaS, four residues were identified and optimized to yield a final variant with a total of seven mutations (DRN-PaS) capable of hydrolyzing ECS ~80 times faster than the best PaS variant previously available. This DRN-PaS also shows improved activity for other α-configured steroid sulfates. Simultaneous mutagenesis was essential to obtain DRN-PaS due to complementarity between targeted residues.


Assuntos
Arilsulfatases , Pseudomonas aeruginosa , Arilsulfatases/genética , Arilsulfatases/química , Arilsulfatases/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Hidrólise , Sulfatases/genética , Sulfatases/química , Sulfatos/química , Sulfatos/metabolismo , Esteroides
5.
ISME Commun ; 2(1): 15, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37938679

RESUMO

Determining the drivers of microbial community assembly is a central theme of microbial ecology, and chemical ecologists seek to characterize how secondary metabolites mediate these assembly patterns. Environmental structure affects how communities assemble and what metabolic pathways aid in that assembly. Here, we bridged these two perspectives by addressing the chemical drivers of community assembly within a spatially structured landscape with varying oxygen availability. We hypothesized that structured environments would favor higher microbial diversity and metabolite diversity. We anticipated that the production of a compound would be more advantageous in a structured environment (less mixing) compared to an unstructured environment (more mixing), where the molecule would have a diminished local effect. We observed this to be partially true in our experiments: structured environments had similar microbial diversity compared to unstructured environments but differed significantly in the metabolites produced. We also found that structured environments selected for communities with higher evenness, rather than communities with higher richness. This supports the idea that when characterizing the drivers of community assembly, it matters less about who is there and more about what they are doing. Overall, these data contribute to a growing effort to approach microbial community assembly with interdisciplinary tools and perspectives.

6.
Sci Total Environ ; 812: 151431, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748841

RESUMO

SARS-CoV-2 was discovered among humans in late 2019 and rapidly spread across the world. Although the virus is transmitted by respiratory droplets, most infected persons also excrete viral particles in their feces. This fact prompted a range of studies assessing the usefulness of wastewater surveillance to determine levels of infection and transmission and produce early warnings of outbreaks in local communities, independently of human testing. In this study, we collected samples of wastewater from 13 locations across Oklahoma City, representing different population types, twice per week from November 2020 to end of March 2021. Wastewater samples were collected and analyzed for the presence and concentration of SARS-CoV-2 RNA using RT-qPCR. The concentration of SARS-CoV-2 in the wastewater showed notable peaks, preceding the number of reported COVID-19 cases by an average of one week (ranging between 4 and 10 days). The early warning lead-time for an outbreak or increase in cases was significantly higher in areas with larger Hispanic populations and lower in areas with a higher household income or higher proportion of persons aged 65 years or older. Using this relationship, we predicted the number of cases with an accuracy of 81-92% compared to reported cases. These results confirm the validity and timeliness of using wastewater surveillance for monitoring local disease transmission and highlight the importance of differences in population structures when interpreting surveillance outputs and planning preventive action.


Assuntos
COVID-19 , Humanos , Oklahoma/epidemiologia , Grupos Populacionais , RNA Viral , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
8.
Appl Environ Microbiol ; 87(24): e0117721, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34586908

RESUMO

Fungi that degrade B20 biodiesel in storage tanks have also been linked to microbiologically influenced corrosion (MIC). A member of the filamentous fungal genus Paecilomyces and a yeast from the genus Wickerhamomyces were isolated from heavily contaminated B20 storage tanks from multiple Air Force bases. Although these taxa were linked to microbiologically influenced corrosion in situ, precise measurement of their corrosion rates and pitting severity on carbon steel was not available. In the experiments described here, we directly link fungal growth on B20 biodiesel to higher corrosion rates and pitting corrosion of carbon steel under controlled conditions. When these fungi were growing solely on B20 biodiesel for carbon and energy, consumption of FAME and n-alkanes was observed. The corrosion rates for both fungi were highest at the interface between the B20 biodiesel and the aqueous medium, where they acidified the medium and produced deeper pits than abiotic controls. Paecilomyces produced the most corrosion of carbon steel and produced the greatest pitting damage. This study characterizes and quantifies the corrosion of carbon steel by fungi that are common in fouled B20 biodiesel through their metabolism of the fuel, providing valuable insight for assessing MIC associated with storing and dispensing B20 biodiesel. IMPORTANCE Biodiesel is widely used across the United States and worldwide, blended with ultra-low-sulfur diesel in various concentrations. In this study, we were able to demonstrate that the filamentous fungus Paecilomyces AF001 and the yeast Wickerhamomyces SE3 were able to degrade fatty acid methyl esters and alkanes in biodiesel, causing increases in acidity. Both fungi also accelerated the corrosion of carbon steel, especially at the interface of the fuel and water, where their biofilms were located. This research provides controlled, quantified measurements and the localization of microbiologically influenced corrosion caused by common fungal contaminants in biodiesel fuels.


Assuntos
Biocombustíveis , Paecilomyces/metabolismo , Saccharomycetales/metabolismo , Aço , Alcanos , Biocombustíveis/microbiologia , Carbono , Corrosão
9.
Front Microbiol ; 12: 675798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354680

RESUMO

Molecular techniques continue to reveal a growing disparity between the immense diversity of microbial life and the small proportion that is in pure culture. The disparity, originally dubbed "the great plate count anomaly" by Staley and Konopka, has become even more vexing given our increased understanding of the importance of microbiomes to a host and the role of microorganisms in the vital biogeochemical functions of our biosphere. Searching for novel antimicrobial drug targets often focuses on screening a broad diversity of microorganisms. If diverse microorganisms are to be screened, they need to be cultivated. Recent innovative research has used molecular techniques to assess the efficacy of cultivation efforts, providing invaluable feedback to cultivation strategies for isolating targeted and/or novel microorganisms. Here, we aimed to determine the efficiency of cultivating representative microorganisms from a non-human, mammalian microbiome, identify those microorganisms, and determine the bioactivity of isolates. Sequence-based data indicated that around 57% of the ASVs detected in the original inoculum were cultivated in our experiments, but nearly 53% of the total ASVs that were present in our cultivation experiments were not detected in the original inoculum. In light of our controls, our data suggests that when molecular tools were used to characterize our cultivation efforts, they provided a more complete and more complex, understanding of which organisms were present compared to what was eventually detected during cultivation. Lastly, about 3% of the isolates collected from our cultivation experiments showed inhibitory bioactivity against an already multidrug-resistant pathogen panel, further highlighting the importance of informing and directing future cultivation efforts with molecular tools.

10.
Geobiology ; 19(3): 261-277, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33524239

RESUMO

Micro-organisms have long been implicated in the construction of stromatolites. Yet, establishing a microbial role in modern stromatolite growth via molecular analysis is not always straightforward because DNA in stromatolites can have multiple origins. For example, the genomic material could represent the microbes responsible for the construction of the stromatolite (i.e., "builders"), microbes that inhabited the structure after it was built (i.e., "tenants"), or microbes/organic matter that were passively incorporated after construction from the water column or later diagenetic fluids (i.e., "squatters"). Disentangling the role of micro-organisms in stromatolite construction, already difficult in modern systems, becomes more difficult as organic signatures degrade, and their context is obscured. To evaluate our ability to accurately decipher the role of micro-organisms in stromatolite formation in geologically recent settings, 16/18S SSU rRNA gene sequences were analyzed from three systems where the context of growth was well understood: (a) an actively growing stromatolite from a silicic hot spring in Yellowstone National Park, Wyoming, where the construction of the structure is controlled by cyanobacteria; (b) a mixed carbonate and silica precipitate from Little Hot Creek, a hot spring in the Long Valley Caldera of California that has both abiogenic and biogenic components to accretion; and (c) a near-modern lacustrine carbonate stromatolite from Walker Lake, Nevada that is likely abiogenic. In all cases, the largest percentage of recovered DNA sequences, especially when focused on the deeper portions of the structures, belonged to either the tenant or squatter communities, not the actual builders. Once removed from their environmental context, correct interpretation of biology's role in stromatolite morphogenesis was difficult. Because high-throughput genomic analysis may easily lead to incorrect assumptions even in these modern and near-modern structures, caution must be exercised when interpreting micro-organismal involvement in the construction of accretionary structures throughout the rock record.


Assuntos
Cianobactérias , Migrantes , Cianobactérias/genética , Sedimentos Geológicos , Humanos , Nevada , Wyoming
11.
Am J Infect Control ; 48(11): 1354-1360, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32334002

RESUMO

BACKGROUND: Environmental contamination of patient rooms and adjacent areas with C. difficile spores is a recognized transmission risk. Previous studies have shown that spores are aerosolized during patient care. These spores can remain airborne for extended periods and may contaminate distant surfaces. High-volume air sampling equipment allows for the collection of a large volume of air and was evaluated in the collection of C. difficile aerosol. METHOD: Air samplers evaluated in this research included the DFU-1000, XMX/2L-MIL, Biocapture-650, and a MB2. Aerosols of C. difficile were generated in a 5-m3 chamber and each air sampler sampled in the aerosol test chamber simultaneously with referee air samplers. RESULTS: The DFU-1000 achieved the highest efficiency of the 4 air samplers (P = .0145) with a mean efficiency of 38.60%. The relative efficiencies of the Biocapture-650, XMX/2L-MIL, and MB2 were 28.16%, 10.51%, and 3.05%, respectively. DISCUSSION/CONCLUSIONS: This study demonstrated high variation based on the sampling method employed. Based on the results of these studies, high-volume air samplers may be effectively applied to sample for airborne C. difficile in health care environments. The high sampling flow rate of the DFU-1000 would allow for the complete sampling of a patient room-sized volume in less than 1 hour.


Assuntos
Clostridioides difficile , Clostridioides , Aerossóis/análise , Atenção à Saúde , Monitoramento Ambiental , Humanos , Esporos Bacterianos
12.
Front Microbiol ; 11: 167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174893

RESUMO

Renewable fuels hold great promise for the future yet their susceptibility to biodegradation and subsequent corrosion represents a challenge that needs to be directly assessed. Biodiesel is a renewable fuel that is widely used as a substitute or extender for petroleum diesel and is composed of a mixture of fatty acid methyl esters derived from plant or animal fats. Biodiesel can be blended up to 20% v/v with ultra-low sulfur diesel (i.e., B20) and used interchangeably with diesel engines and infrastructure. The addition of biodiesel, however, has been linked to increased susceptibility to biodegradation. Microorganisms proliferating via degradation of biodiesel blends have been linked to microbiologically influenced corrosion in the laboratory, but not measured directly in storage tanks (i.e., in situ). To measure in situ microbial proliferation, fuel degradation and microbially influenced corrosion, we conducted a yearlong study of B20 storage tanks in operation at two locations, identified the microorganisms associated with fuel fouling, and measured in situ corrosion. The bacterial populations were more diverse than the fungal populations, and largely unique to each location. The bacterial populations included members of the Acetobacteraceae, Clostridiaceae, and Proteobacteria. The abundant Eukaryotes at both locations consisted of the same taxa, including a filamentous fungus within the family Trichocomaceae, not yet widely recognized as a contaminant of petroleum fuels, and the Saccharomycetaceae family of yeasts. Increases in the absolute and relative abundances of the Trichocomaceae were correlated with significant, visible fouling and pitting corrosion. This study identified the relationship between fouling of B20 with increased rates of corrosion and the microorganisms responsible, largely at the bottom of the sampled storage tanks. To our knowledge this is the first in situ study of this scale incorporating community and corrosion measurements in an active biodiesel storage environment.

13.
Pestic Biochem Physiol ; 161: 61-67, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31685198

RESUMO

Extensive use of pyrethroids for malaria control in Africa has led to widespread pyrethroid resistance in the two major African vectors of malaria An. gambiae and An. funestus. This is often associated with constitutively elevated levels of cytochrome P450s involved with pyrethroid metabolism and detoxification. P450s have the capacity to metabolise diverse substrates, which raises concerns about their potential to cause cross-resistance. A bank of seven recombinant P450s from An. gambiae (CYPs 6M2, 6P2, 6P3, 6P4, 6P5, 9J5) and An. funestus (CYP6P9a) commonly associated with pyrethroid resistance were screened against twelve insecticides representing the five major classes of insecticides recommended by WHO for malaria control; permethrin, etofenprox and bifenthrin (type I pyrethroids), deltamethrin, lambda cyhalothrin and cypermethrin (type II pyrethroids), DDT (organochlorine), bendiocarb (carbamate), malathion, pirimiphos methyl and fenitrothion (organophosphates) and pyriproxyfen (juvenile hormone analogue). DDT was not metabolised by the P450 panel, while bendiocarb was only metabolised by CYP6P3. Pyrethroids and pyriproxyfen were largely susceptible to metabolism by the P450 panel, as were organophosphates, which are activated by P450s. Primiphos-methyl is increasingly used for malaria control. Examination of the pirimiphos-methyl metabolites generated by CYP6P3 revealed both the active pirimiphos-methyl-oxon form and the inactive oxidative cleavage product 2-diethylamino-6-hydroxy-4-methylpyrimidine. The inhibition profile of CYPs 6M2, 6P2, 6P3, 6P9a and 9J5 was also examined using diethoxyfluorescein (DEF) as the probe substrate. Bendiocarb was the weakest inhibitor with IC50 > 100 µM across the P450 panel, while CYP6M2 showed strongest inhibition by malathion (IC50 0.7 µM). The results suggest that P450s present at elevated levels in two major Anopheline vectors of malaria in Africa have the capacity to metabolise a diverse range of pyrethroid and organophosphate insecticides as well as pyriproxyfen that could impact vector control.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Inseticidas , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Piretrinas/farmacologia , Animais , Anopheles/classificação , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Compostos Organotiofosforados/farmacologia , Especificidade da Espécie
14.
Protein Eng Des Sel ; 32(3): 129-143, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31504920

RESUMO

In the accompanying paper, we described evolving a lipase to the point where variants were soluble, stable and capable of degrading C8 TAG and C8 esters. These variants were tested for their ability to survive in an environment that might be encountered in a washing machine. Unfortunately, they were inactivated both by treatment with a protease used in laundry detergents and by very low concentrations of sodium dodecyl sulfate (SDS). In addition, all the variants had very low levels of activity with triglycerides with long aliphatic chains and with naturally occurring oils, like olive oil. Directed evolution was used to select variants with enhanced properties. In the first 10 rounds of evolution, the primary screen was selected for variants capable of hydrolyzing olive oil whereas the secondary screen was selected for enhanced tolerance towards a protease and SDS. In the final six rounds of evolution, the primary and secondary screens identified variants that retained activity after treatment with SDS. Sixteen cycles of evolution gave variants with greatly enhanced lipolytic activity on substrates that had both long (C16 and C18) as well as short (C3 and C8) chains. We found variants that were stable for more than 3 hours in protease concentrations that rapidly degrade the wild-type enzyme. Enhanced tolerance towards SDS was found in variants that could break down naturally occurring lipid and resist protease attack. The amino acid changes that gave enhanced properties were concentrated in the cap domain responsible for substrate binding.


Assuntos
Evolução Molecular Direcionada , Lipase/genética , Lipase/metabolismo , Peptídeo Hidrolases/metabolismo , Engenharia de Proteínas , Triglicerídeos/metabolismo , Detergentes/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/genética , Hidrólise , Lipase/química , Proteólise , Dodecilsulfato de Sódio/farmacologia , Solubilidade , Especificidade por Substrato , Temperatura
15.
Microbiol Resour Announc ; 8(30)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346009

RESUMO

Phialemoniopsis curvata D216 is a filamentous fungus isolated from contaminated diesel fuel. The genome size is 40.3 Mbp with a G+C content of 54.81%. Its genome encodes enzymes and pathways likely involved in the degradation of and survival in fuel, including lipases, fatty acid transporters, and beta oxidation.

17.
Artigo em Inglês | MEDLINE | ID: mdl-30701234

RESUMO

The microscopic alga Picocystis sp. strain ML is responsible for recurrent algal blooms in Mono Lake, CA. This organism was characterized by only very little molecular data, despite its prominence as a primary producer in saline environments. Here, we report the draft genome sequence for Picocystis sp. strain ML based on long-read sequencing.

18.
Appl Environ Microbiol ; 84(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120120

RESUMO

Algal blooms in lakes are often associated with anthropogenic eutrophication; however, they can occur without the human introduction of nutrients to a lake. A rare bloom of the alga Picocystis sp. strain ML occurred in the spring of 2016 at Mono Lake, a hyperalkaline lake in California, which was also at the apex of a multiyear-long drought. These conditions presented a unique sampling opportunity to investigate microbiological dynamics and potential metabolic function during an intense natural algal bloom. We conducted a comprehensive molecular analysis along a depth transect near the center of the lake from the surface to a depth of 25 m in June 2016. Across sampled depths, rRNA gene sequencing revealed that Picocystis-associated chloroplasts were found at 40 to 50% relative abundance, greater than values recorded previously. Despite high relative abundances of the photosynthetic oxygenic algal genus Picocystis, oxygen declined below detectable limits below a depth of 15 m, corresponding with an increase in microorganisms known to be anaerobic. In contrast to previously sampled years, both metagenomic and metatranscriptomic data suggested a depletion of anaerobic sulfate-reducing microorganisms throughout the lake's water column. Transcripts associated with photosystem I and II were expressed at both 2 m and 25 m, suggesting that limited oxygen production could occur at extremely low light levels at depth within the lake. Blooms of Picocystis appear to correspond with a loss of microbial activity such as sulfate reduction within Mono Lake, yet microorganisms may survive within the sediment to repopulate the lake water column as the bloom subsides.IMPORTANCE Mono Lake, California, provides a habitat to a unique ecological community that is heavily stressed due to recent human water diversions and a period of extended drought. To date, no baseline information exists from Mono Lake to understand how the microbial community responds to human-influenced drought or algal bloom or what metabolisms are lost in the water column as a consequence of such environmental pressures. While previously identified anaerobic members of the microbial community disappear from the water column during drought and bloom, sediment samples suggest that these microorganisms survive at the lake bottom or in the subsurface. Thus, the sediments may represent a type of seed bank that could restore the microbial community as a bloom subsides. Our work sheds light on the potential photosynthetic activity of the halotolerant alga Picocystis sp. strain ML and how the function and activity of the remainder of the microbial community responds during a bloom at Mono Lake.


Assuntos
Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Filogenia , California , Clorófitas/classificação , Clorófitas/genética , Cloroplastos/metabolismo , Ecossistema , Eutrofização , Lagos/análise , Fotossíntese , Processos Fototróficos , Estações do Ano
19.
Front Microbiol ; 9: 1464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057571

RESUMO

Microbial mats are found in a variety of modern environments, with evidence for their presence as old as the Archean. There is much debate about the rates and conditions of processes that eventually lithify and preserve mats as microbialites. Here, we apply novel tracer experiments to quantify both mat biomass addition and the formation of CaCO3. Microbial mats from Little Hot Creek (LHC), California, contain calcium carbonate that formed within multiple mat layers, and thus constitute a good test case to investigate the relationship between the rate of microbial mat growth and carbonate precipitation. The laminated LHC mats were divided into four layers via color and fabric, and waters within and above the mat were collected to determine their carbonate saturation states. Samples of the microbial mat were also collected for 16S rRNA analysis of microbial communities in each layer. Rates of carbonate precipitation and carbon fixation were measured in the laboratory by incubating homogenized samples from each mat layer with δ13C-labeled HCO3- for 24 h. Comparing these rates with those from experimental controls, poisoned with NaN3 and HgCl2, allowed for differences in biogenic and abiogenic precipitation to be determined. Carbon fixation rates were highest in the top layer of the mat (0.17% new organic carbon/day), which also contained the most phototrophs. Isotope-labeled carbonate was precipitated in all four layers of living and poisoned mat samples. In the top layer, the precipitation rate in living mat samples was negligible although abiotic precipitation occurred. In contrast, the bottom three layers exhibited biologically enhanced carbonate precipitation. The lack of correlation between rates of carbon fixation and biogenic carbonate precipitation suggests that processes other than autotrophy may play more significant roles in the preservation of mats as microbialites.

20.
Front Microbiol ; 9: 997, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887837

RESUMO

Hot spring environments can create physical and chemical gradients favorable for unique microbial life. They can also include authigenic mineral precipitates that may preserve signs of biological activity on Earth and possibly other planets. The abiogenic or biogenic origins of such precipitates can be difficult to discern, therefore a better understanding of mineral formation processes is critical for the accurate interpretation of biosignatures from hot springs. Little Hot Creek (LHC) is a hot spring complex located in the Long Valley Caldera, California, that contains mineral precipitates composed of a carbonate base (largely submerged) topped by amorphous silica (largely emergent). The precipitates occur in close association with microbial mats and biofilms. Geological, geochemical, and microbiological data are consistent with mineral formation via degassing and evaporation rather than direct microbial involvement. However, the microfabric of the silica portion is stromatolitic in nature (i.e., wavy and finely laminated), suggesting that abiogenic mineralization has the potential to preserve textural biosignatures. Although geochemical and petrographic evidence suggests the calcite base was precipitated via abiogenic processes, endolithic microbial communities modified the structure of the calcite crystals, producing a textural biosignature. Our results reveal that even when mineral precipitation is largely abiogenic, the potential to preserve biosignatures in hot spring settings is high. The features found in the LHC structures may provide insight into the biogenicity of ancient Earth and extraterrestrial rocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...