Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676472

RESUMO

BACKGROUND AND AIMS: The size and shape of reproductive structures is especially relevant in evolution because these characters are directly related to the capacity of pollination and seed dispersal, a process that plays a basic role in evolutionary patterns. The evolutionary trajectories of reproductive phenotypes in gymnosperms have received special attention in terms of pollination and innovations related to the emergence of the Spermatophytes. However, variability of reproductive structures, evolutionary trends and the role of environment in the evolution of cycad species have not been well documented and explored. This study considered this topic under an explicitly phylogenetic and evolutionary approach that included a broad sampling of reproductive structures in the genus Ceratozamia. METHODS: We sampled 1400 individuals of 36 Ceratozamia species to explore evolutionary pattern and identify and evaluate factors that potentially drove their evolution. We analyzed characters for both pollen and ovulate strobili within a phylogenetic framework using different methods and characters (i. e., molecular and both quantitative and qualitative morphological) to infer phylogenetic relationships. Using this phylogenetic framework, evolutionary models of trait evolution for strobilar size were evaluated. In addition, quantitative morphological variation and its relation to environmental variables across species were analyzed. KEY RESULTS: We found contrasting phylogenetic signals between characters of pollen and ovulate strobili. These structures exhibited high morphological disparity in several characters related to size. Results of analyses of evolutionary trajectories suggested a stabilizing selection model. In regards to phenotype-environment, the analysis produced mixed results and differences for groups in the vegetation type where the species occur; however, a positive relationship with climatic variables was found. CONCLUSIONS: The integrated approach synthesized reproductive phenotypic variation with current phylogenetic hypotheses and provided explicit statements of character evolution. The characters of volume for ovulate strobili were the most informative, which could provide a reference for further study of the evolutionary complexity in Ceratozamia. Finally, heterogeneous environments, which are under changing weather conditions, promote variability of reproductive structures.

2.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662366

RESUMO

We present the genome of the living fossil, Wollemia nobilis, a southern hemisphere conifer morphologically unchanged since the Cretaceous. Presumed extinct until rediscovery in 1994, the Wollemi pine is critically endangered with less than 60 wild adults threatened by intensifying bushfires in the Blue Mountains of Australia. The 12 Gb genome is among the most contiguous large plant genomes assembled, with extremely low heterozygosity and unusual abundance of DNA transposons. Reduced representation and genome re-sequencing of individuals confirms a relictual population since the last major glacial/drying period in Australia, 120 ky BP. Small RNA and methylome sequencing reveal conservation of ancient silencing mechanisms despite the presence of thousands of active and abundant transposons, including some transferred horizontally to conifers from arthropods in the Jurassic. A retrotransposon burst 8-6 my BP coincided with population decline, possibly as an adaptation enhancing epigenetic diversity. Wollemia, like other conifers, is susceptible to Phytophthora, and a suite of defense genes, similar to those in loblolly pine, are targeted for silencing by sRNAs in leaves. The genome provides insight into the earliest seed plants, while enabling conservation efforts.

3.
Plants (Basel) ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771563

RESUMO

Ceratozamia Brongn. is one of the species-rich genera of Cycadales comprising 38 species that are mainly distributed in Mexico, with a few species reported from neighboring regions. Phylogenetic relationships within the genus need detailed investigation based on extensive datasets and reliable systematic approaches. Therefore, we used 30 of the known 38 species to reconstruct the phylogeny based on transcriptome data of 3954 single-copy nuclear genes (SCGs) via coalescent and concatenated approaches and three comparative datasets (nt/nt12/aa). Based on all these methods, Ceratozamia is divided into six phylogenetic subclades within three major clades. There were a few discrepancies regarding phylogenetic position of some species within these subclades. Using these phylogenetic trees, biogeographic history and morphological diversity of the genus are explored. Ceratozamia originated from ancestors in southern Mexico since the mid-Miocene. There is a distinct distribution pattern of species through the Trans-Mexican Volcanic Belt (TMVB), that act as a barrier for the species dispersal at TMVB and its southern and northern part. Limited dispersal events occurred during the late Miocene, and maximum diversification happened during the Pliocene epoch. Our study provides a new insight into phylogenetic relationships, the origin and dispersal routes, and morphological diversity of the genus Ceratozamia. We also explain how past climatic changes affected the diversification of this Mesoamerica-native genus.

4.
Genome Biol Evol ; 15(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36582124

RESUMO

Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. Phylogenetic trees based on 602 genes were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression and relaxation of purifying selection on retained genes were progressive, with greater loss in older nonphotosynthetic lineages. One hundred seventy-four of 1375 plant benchmark universally conserved orthologous genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode not only mainly photosynthetic or plastid membrane proteins but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes.


Assuntos
Genomas de Plastídeos , Orchidaceae , Humanos , Idoso , Filogenia , Genes de Plantas , Proteínas de Plantas/genética , Orchidaceae/genética
5.
Front Plant Sci ; 13: 876779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483967

RESUMO

We assess relationships among 192 species in all 12 monocot orders and 72 of 77 families, using 602 conserved single-copy (CSC) genes and 1375 benchmarking single-copy ortholog (BUSCO) genes extracted from genomic and transcriptomic datasets. Phylogenomic inferences based on these data, using both coalescent-based and supermatrix analyses, are largely congruent with the most comprehensive plastome-based analysis, and nuclear-gene phylogenomic analyses with less comprehensive taxon sampling. The strongest discordance between the plastome and nuclear gene analyses is the monophyly of a clade comprising Asparagales and Liliales in our nuclear gene analyses, versus the placement of Asparagales and Liliales as successive sister clades to the commelinids in the plastome tree. Within orders, around six of 72 families shifted positions relative to the recent plastome analysis, but four of these involve poorly supported inferred relationships in the plastome-based tree. In Poales, the nuclear data place a clade comprising Ecdeiocoleaceae+Joinvilleaceae as sister to the grasses (Poaceae); Typhaceae, (rather than Bromeliaceae) are resolved as sister to all other Poales. In Commelinales, nuclear data place Philydraceae sister to all other families rather than to a clade comprising Haemodoraceae+Pontederiaceae as seen in the plastome tree. In Liliales, nuclear data place Liliaceae sister to Smilacaceae, and Melanthiaceae are placed sister to all other Liliales except Campynemataceae. Finally, in Alismatales, nuclear data strongly place Tofieldiaceae, rather than Araceae, as sister to all the other families, providing an alternative resolution of what has been the most problematic node to resolve using plastid data, outside of those involving achlorophyllous mycoheterotrophs. As seen in numerous prior studies, the placement of orders Acorales and Alismatales as successive sister lineages to all other extant monocots. Only 21.2% of BUSCO genes were demonstrably single-copy, yet phylogenomic inferences based on BUSCO and CSC genes did not differ, and overall functional annotations of the two sets were very similar. Our analyses also reveal significant gene tree-species tree discordance despite high support values, as expected given incomplete lineage sorting (ILS) related to rapid diversification. Our study advances understanding of monocot relationships and the robustness of phylogenetic inferences based on large numbers of nuclear single-copy genes that can be obtained from transcriptomes and genomes.

6.
Nat Plants ; 8(9): 1038-1051, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36050461

RESUMO

The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.


Assuntos
Gleiquênias , Elementos de DNA Transponíveis , Evolução Molecular , Gleiquênias/genética , Genoma de Planta , Plantas/genética
7.
Ann Bot ; 130(5): 671-685, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36111957

RESUMO

BACKGROUND AND AIMS: Cycads are regarded as an ancient lineage of living seed plants, and hold important clues to understand the early evolutionary trends of seed plants. The molecular phylogeny and spatio-temporal diversification of one of the species-rich genera of cycads, Macrozamia, have not been well reconstructed. METHODS: We analysed a transcriptome dataset of 4740 single-copy nuclear genes (SCGs) of 39 Macrozamia species and two outgroup taxa. Based on concatenated (maximum parsimony, maximum likelihood) and multispecies coalescent analyses, we first establish a well-resolved phylogenetic tree of Macrozamia. To identify cyto-nuclear incongruence, the plastid protein coding genes (PCGs) from transcriptome data are extracted using the software HybPiper. Furthermore, we explore the biogeographical history of the genus and shed light on the pattern of floristic exchange between three distinct areas of Australia. Six key diagnostic characters are traced on the phylogenetic framework using two comparative methods, and infra-generic classification is investigated. KEY RESULTS: The tree topologies of concatenated and multi-species coalescent analyses of SCGs are mostly congruent with a few conflicting nodes, while those from plastid PCGs show poorly supported relationships. The genus contains three major clades that correspond to their distinct distributional areas in Australia. The crown group of Macrozamia is estimated to around 11.80 Ma, with a major expansion in the last 5-6 Myr. Six morphological characters show homoplasy, and the traditional phenetic sectional division of the genus is inconsistent with this current phylogeny. CONCLUSIONS: This first detailed phylogenetic investigation of Macrozamia demonstrates promising prospects of SCGs in resolving phylogenetic relationships within cycads. Our study suggests that Macrozamia, once widely distributed in Australia, underwent major extinctions because of fluctuating climatic conditions such as cooling and mesic biome disappearance in the past. The current close placement of morphologically distinct species in the phylogenetic tree may be related to neotenic events that occurred in the genus.


Assuntos
Cycadopsida , Zamiaceae , Filogenia , Teorema de Bayes , Austrália , Evolução Molecular
8.
Front Plant Sci ; 13: 873505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574142

RESUMO

Inflorescence structure is very diverse and homoplasious, yet the developmental basis of their homoplasy is poorly understood. To gain an understanding of the degree of homology that these diverse structures share, we characterize the developmental morphology and anatomy of various umbellate inflorescences across the monocots and analyzed them in an evolutionary context. To characterize branching order, we characterized the developmental morphology of multiple inflorescences with epi-illumination, and vascular anatomy with Laser Ablation Tomography, a novel high-throughput method to reconstruct three-dimensional vasculature. We used these approaches to analyze the umbellate inflorescences in five instances of presumed homoplasy: in three members of the Amaryllidaceae; in three members of the Asparagaceae, including a putatively derived raceme in Dichelostemma congestum; in Butomus umbellatus (Alismataceae), in Tacca chantrieri (Dioscoreaceae), and in umbellate structure in Fritillaria imperialis (Liliaceae). We compare these with racemes found in three members of the subfamily Scilliioideae (Asparagaceae). We find there are three convergent developmental programs that generate umbellate inflorescences in the monocots, bostryx-derived, cincinnus-derived and raceme-derived. Additionally, among the bostryx-derived umbellate inflorescence, there are three instances of parallel evolution found in the Amaryllidaceae, in two members of Brodiaeoideae (Asparagaceae), and Butomus umbellatus, all of which share the same generative developmental program. We discuss the morphological modifications necessary to generate such complex and condensed structures and use these insights to describe a new variant of metatopy, termed horizontal concaulesence. We contextualize our findings within the broader literature of monocot inflorescence development, with a focus on synthesizing descriptive developmental morphological studies.

9.
PhytoKeys ; 208: 1-102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761399

RESUMO

Ceratozamia (Zamiaceae, Cycadales), is a member one of the most endangered seed plant groups. Species of Ceratozamia grow from near sea level up to 2,100 meters in Mexico and Mesoamerica. We present a modern taxonomic treatment of Ceratozamia, based on fieldwork combined with detailed study of herbarium specimens in and from Mexico and Central America. This new revision is based on incorporation of morphological, molecular and biogeographic data that have been previously published in circumscriptions of species complexes by our group. Detailed morphological descriptions of the 36 species of Ceratozamia are provided and relevant characters for the genus are discussed and described. A majority are endemic to Mexico and are concentrated at high elevations in mountainous areas. Synonymies, lectotypifications, etymologies, taxonomic notes, distribution maps, illustrations and detailed species-level comparisons are included, as well as a dichotomous key for identification of all species. Data on distributional ranges and habitats of all species are summarized. Ceratozamiaosbornei D.W.Stev., Mart.-Domínguez & Nic.-Mor., sp. nov. is described from evergreen tropical forests of Belize and we highlight new populations and distributional ranges for C.subroseophylla Mart.-Domínguez & Nic.-Mor. and C.vovidesii Pérez-Farr. & Iglesias in the Mesoamerican region.

10.
Sci Rep ; 11(1): 21995, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754044

RESUMO

Although the seed is a key morphological innovation, its origin remains unknown and molecular data outside angiosperms is still limited. Ginkgo biloba, with a unique place in plant evolution, being one of the first extant gymnosperms where seeds evolved, can testify to the evolution and development of the seed. Initially, to better understand the development of the ovules in Ginkgo biloba ovules, we performed spatio-temporal expression analyses in seeds at early developing stages, of six candidate gene homologues known in angiosperms: WUSCHEL, AINTEGUMENTA, BELL1, KANADI, UNICORN, and C3HDZip. Surprisingly, the expression patterns of most these ovule homologues indicate that they are not wholly conserved between angiosperms and Ginkgo biloba. Consistent with previous studies on early diverging seedless plant lineages, ferns, lycophytes, and bryophytes, many of these candidate genes are mainly expressed in mega- and micro-sporangia. Through in-depth comparative transcriptome analyses of Ginkgo biloba developing ovules, pollen cones, and megagametophytes we have been able to identify novel genes, likely involved in ovule development. Finally, our expression analyses support the synangial or neo-synangial hypotheses for the origin of the seed, where the sporangium developmental network was likely co-opted and restricted during integument evolution.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica de Plantas , Ginkgo biloba/genética , Sementes/crescimento & desenvolvimento , Ginkgo biloba/embriologia
11.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34725254

RESUMO

The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.


Assuntos
Plantas/genética , Altitude , Chile , Mudança Climática , Clima Desértico , Ecossistema , Genômica/métodos , Filogenia , Solo , Microbiologia do Solo
12.
Front Plant Sci ; 12: 639368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995438

RESUMO

Coevolution between plants and insects is thought to be responsible for generating biodiversity. Extensive research has focused largely on antagonistic herbivorous relationships, but mutualistic pollination systems also likely contribute to diversification. Here we describe an example of chemically-mediated mutualistic species interactions affecting trait evolution and lineage diversification. We show that volatile compounds produced by closely related species of Zamia cycads are more strikingly different from each other than are other phenotypic characters, and that two distantly related pollinating weevil species have specialized responses only to volatiles from their specific host Zamia species. Plant transcriptomes show that approximately a fifth of genes related to volatile production are evolving under positive selection, but we find no differences in the relative proportion of genes under positive selection in different categories. The importance of phenotypic divergence coupled with chemical communication for the maintenance of this obligate mutualism highlights chemical signaling as a key mechanism of coevolution between cycads and their weevil pollinators.

13.
Front Plant Sci ; 12: 813915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154210

RESUMO

The family Rapateaceae represents an early-divergent lineage of Poales with biotically pollinated showy flowers. We investigate developmental morphology and anatomy in all three subfamilies and five tribes of Rapateaceae to distinguish between contrasting hypotheses on spikelet morphology and to address questions on the presence of nectaries and gynoecium structure. We support an interpretation of the partial inflorescence (commonly termed spikelet), as a uniaxial system composed of a terminal flower and numerous empty phyllomes. A terminal flower in an inflorescence unit is an autapomorphic feature of Rapateaceae. The gynoecium consists of synascidiate, symplicate, and usually asymplicate zones, with gynoecium formation encompassing congenital and often also postgenital fusions between carpels. Species of Rapateaceae differ in the relative lengths of the gynoecial zones, the presence or absence of postgenital fusion between the carpels and placentation in the ascidiate or plicate carpel zones. In contrast with previous reports, septal nectaries are lacking in all species. The bird-pollinated tribe Schoenocephalieae is characterized by congenital syncarpy; it displays an unusual type of gynoecial (non-septal) nectary represented by a secretory epidermis at the gynoecium base.

14.
Tree Physiol ; 41(2): 223-239, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32975283

RESUMO

The absence of pines from tropical forests is a puzzling biogeographical oddity potentially explained by traits of shade intolerance. Pinus krempfii (Lecomte), a flat-leaved pine endemic to the Central Highlands of Vietnam, provides a notable exception as it seems to compete successfully with shade-tolerant tropical species. Here, we test the hypothesis that successful conifer performance at the juvenile stage depends on physiological traits of shade tolerance by comparing the physiological characteristics of P. krempfii to coexisting species from two taxa: the genus Pinus, and a relatively abundant and shade-tolerant conifer family found in pantropical forests, the Podocarpaceae. We examined leaf photosynthetic, respiratory and biochemical traits. Additionally, we compiled attainable maximum photosynthesis, maximum RuBP carboxylation (Vcmax) and maximum electron transport (Jmax) values for Pinus and Podocarpaceae species from the literature. In our literature compilation, P. krempfii was intermediate between Pinus and Podocarpaceae in its maximum photosynthesis and its Vcmax. Pinus exhibited a higher Vcmax than Podocarpaceae, resulting in a less steep slope in the linear relationship between Jmax and Vcmax. These results suggest that Pinus may be more shade intolerant than Podocarpaceae, with P. krempfii falling between the two taxa. However, in contrast, Vietnamese conifers' leaf mass per areas and biochemical traits did not highlight the same intermediate nature of P. krempfii. Furthermore, regardless of leaf morphology or family assignation, all species demonstrated a common and extremely high carbon gain efficiency. Overall, our findings highlight the importance of shade-tolerant photosynthetic traits for conifer survival in tropical forests. However, they also demonstrate a diversity of shade tolerance strategies, all of which lead to the persistence of Vietnamese juvenile conifers in low-light tropical understories.


Assuntos
Pinus , Povo Asiático , Florestas , Humanos , Luz , Fotossíntese , Folhas de Planta , Árvores
15.
PhytoKeys ; 156: 1-25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32943975

RESUMO

Ceratozamia is a genus of cycads occurring in eastern Mexico and Central America. In this study, we describe a new species from the Pacific region of Mexico in Guerrero state. This locality represents the most northwestern Mexico distribution for the genus. We focus the comparison of this species with the most geographically proximate and phenotypically relevant lineages for this taxon. We followed an integrative taxonomy approach to evaluate the classification of these species, including geographic location, morphology, DNA barcoding and phenology as primary sources of systematic data. Within the morphological dataset, reproductive structures are described in detail and new characters are proposed for microsporophylls. The comparative morphology of these structures facilitated the elucidation of differences in forms and species for identification. The two chosen DNA barcoding markers - namely, the chloroplast genome coding region matK and the nuclear ribosomal internal transcribed spacer (ITS) region - had low divergence, allowing only 61% of species identification, suggesting slow molecular evolutionary rates. Besides employing these three basic sources of evidence, we introduced phenology as additional information for species circumscription. In addition, this work includes a brief review of the genus at the species-level. This is therefore the most recent review for Ceratozamia across its full geographic range (latitudinal and elevational). Overall, this work further contributes to a comprehensive framework for systematic studies in Mexican cycads.

16.
Am J Bot ; 107(1): 91-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31814117

RESUMO

PREMISE: Phylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. METHODS: We employed diverse likelihood-based analyses to infer large-scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. RESULTS: Overall land-plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four-taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion of RNA edit sites restores cases of unexpected non-monophyly to monophyly for Takakia and two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophic Aneura but not Buxbaumia. Plastid genome structure is nearly invariant across bryophytes, but the tufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. CONCLUSIONS: A common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavily RNA-edited taxa. The Buxbaumia plastome lacks hallmarks of relaxed selection found in mycoheterotrophic Aneura. Autotrophic bryophyte plastomes, including Buxbaumia, hardly vary in overall structure.


Assuntos
Briófitas , Evolução Molecular , Consenso , Funções Verossimilhança , Filogenia
17.
Front Plant Sci ; 10: 631, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214208

RESUMO

The Plant Ontology (PO) is a community resource consisting of standardized terms, definitions, and logical relations describing plant structures and development stages, augmented by a large database of annotations from genomic and phenomic studies. This paper describes the structure of the ontology and the design principles we used in constructing PO terms for plant development stages. It also provides details of the methodology and rationale behind our revision and expansion of the PO to cover development stages for all plants, particularly the land plants (bryophytes through angiosperms). As a case study to illustrate the general approach, we examine variation in gene expression across embryo development stages in Arabidopsis and maize, demonstrating how the PO can be used to compare patterns of expression across stages and in developmentally different species. Although many genes appear to be active throughout embryo development, we identified a small set of uniquely expressed genes for each stage of embryo development and also between the two species. Evaluating the different sets of genes expressed during embryo development in Arabidopsis or maize may inform future studies of the divergent developmental pathways observed in monocotyledonous versus dicotyledonous species. The PO and its annotation database (http://www.planteome.org) make plant data for any species more discoverable and accessible through common formats, thus providing support for applications in plant pathology, image analysis, and comparative development and evolution.

18.
Plant Reprod ; 32(2): 153-166, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30430247

RESUMO

KEY MESSAGE: Complex protein-containing reproductive secretions are a conserved trait amongst all extant gymnosperms; the pollination drops of most groups include carbohydrate-modifying enzymes and defence proteins. Pollination drops are aqueous secretions that receive pollen and transport it to the ovule interior in gymnosperms (Coniferales, Cycadales, Ginkgoales, Gnetales). Proteins are well established as components of pollination drops in conifers (Coniferales) and Ephedra spp. (Gnetales), but it is unknown whether proteins are also present in the pollination drops of cycads (Cycadales), Ginkgo (Ginkgoales), Gnetum (Gnetales), or in the pollination drops produced by sterile ovules occurring on pollen plants in the Gnetales. We used liquid chromatography-tandem mass spectrometry followed by database-derived protein identification to conduct proteomic surveys of pollination drops collected from: Ceratozamia hildae, Zamia furfuracea and Cycas rumphii (Cycadales); Ginkgo biloba (Ginkgoales); Gnetum gnemon and Welwitschia mirabilis, including pollination drops from both microsporangiate and ovulate plants (Gnetales). We identified proteins in all samples: C. hildae (61), Z. furfuracea (40), C. rumphii (9), G. biloba (57), G. gnemon ovulate (17) and sterile ovules from microsporangiate plants (25) and W. mirabilis fertile ovules (1) and sterile ovules from microsporangiate plants (138). Proteins involved in defence and carbohydrate modification occurred in the drops of most groups, indicating conserved functions for proteins in pollination drops. Our study demonstrates that all extant gymnosperm groups produce complex reproductive secretions containing proteins, an ancient trait that likely contributed to the evolutionary success of seed plants.


Assuntos
Cycadopsida/fisiologia , Proteínas de Plantas/metabolismo , Polinização/fisiologia , Proteômica , Evolução Biológica , Óvulo Vegetal/fisiologia , Fenótipo , Pólen/fisiologia , Reprodução
19.
Am J Bot ; 105(11): 1888-1910, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30368769

RESUMO

PREMISE OF THE STUDY: We present the first plastome phylogeny encompassing all 77 monocot families, estimate branch support, and infer monocot-wide divergence times and rates of species diversification. METHODS: We conducted maximum likelihood analyses of phylogeny and BAMM studies of diversification rates based on 77 plastid genes across 545 monocots and 22 outgroups. We quantified how branch support and ascertainment vary with gene number, branch length, and branch depth. KEY RESULTS: Phylogenomic analyses shift the placement of 16 families in relation to earlier studies based on four plastid genes, add seven families, date the divergence between monocots and eudicots+Ceratophyllum at 136 Mya, successfully place all mycoheterotrophic taxa examined, and support recognizing Taccaceae and Thismiaceae as separate families and Arecales and Dasypogonales as separate orders. Only 45% of interfamilial divergences occurred after the Cretaceous. Net species diversification underwent four large-scale accelerations in PACMAD-BOP Poaceae, Asparagales sister to Doryanthaceae, Orchidoideae-Epidendroideae, and Araceae sister to Lemnoideae, each associated with specific ecological/morphological shifts. Branch ascertainment and support across monocots increase with gene number and branch length, and decrease with relative branch depth. Analysis of entire plastomes in Zingiberales quantifies the importance of non-coding regions in identifying and supporting short, deep branches. CONCLUSIONS: We provide the first resolved, well-supported monocot phylogeny and timeline spanning all families, and quantify the significant contribution of plastome-scale data to resolving short, deep branches. We outline a new functional model for the evolution of monocots and their diagnostic morphological traits from submersed aquatic ancestors, supported by convergent evolution of many of these traits in aquatic Hydatellaceae (Nymphaeales).


Assuntos
Especiação Genética , Genomas de Plastídeos , Magnoliopsida/genética , Filogenia , DNA Intergênico , Zingiberales/genética
20.
PhytoKeys ; (100): 91-124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962891

RESUMO

The genus Ceratozamia is revised for the Sierra Madre Oriental in Mexico. This region is one of the biogeographic areas with the greatest diversity of species in this genus. These species are highly variable morphologically and this variability has led to a complex taxonomic history with many synonyms, particularly with reference to C. mexicana. We present a comprehensive taxonomic revision with history of nomenclature and the morphology, relationships, distribution and use of these species. We also introduce a key for their identification, descriptions, full synonymy, nomenclatural notes, etymologies and neotypes as well as taxonomic comments describing relevant taxonomic changes. We recognise fourteen species in this biogeographic province: C. brevifrons, C. chamberlainii, C. decumbens, C. delucana, C. fuscoviridis, C. hildae, C. kuesteriana, C. latifolia, C. mexicana, C. morettii, C. sabatoi, C. tenuis, C. totonacorum and C. zaragozae. This study provides a foundation for future taxonomic work in Neotropical species of Ceratozamia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...