Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Am Thorac Soc ; 13 Suppl 1: S97-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27027966

RESUMO

BACKGROUND: Although multiple clinical studies have found an association between vitamin D (Vit D) deficiency and asthma, a recent clinical study suggested lack of therapeutic effect of Vit D supplementation. Nonetheless, the mechanisms by which Vit D influences airway structure and function in the context of inflammation and asthma remains undefined. In this regard, Vit D effects on airway smooth muscle (ASM) are important, given the role of this cell type in the hypercontractility and remodeling. We assessed the mechanisms by which Vit D modulates the enhancing effects of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and IL-13 on intracellular Ca(2+) ([Ca(2+)]i) levels and remodeling in nonasthmatic versus asthmatic human ASM. METHODS: Human ASM was enzymatically isolated from surgical lung specimens of patients with clinically defined mild to moderate asthma versus no asthma. Cells were treated with 10 ng/ml TNF-α and 50 ng/ml IL-13 in the presence or absence of 100 nM calcitriol. MEASUREMENTS AND MAIN RESULTS: Interestingly, Vit D receptor (VDR) and retinoic X receptor-α levels were maintained, even increased, in subjects with asthma when treated with TNF-α and IL-13. Compared with untreated cells, calcitriol blunted the heightened effect of TNF-α on [Ca(2+)]i response to histamine in ASM. Calcitriol particularly blunted TNF-α and IL-13 effects on collagen and fibronectin deposition, especially in asthmatic ASM. Calcitriol stimulated VDR/retinoic X receptor dimerization and VDR activity even in subjects with asthma and with IL-13, highlighting retained functionality. Expression of Class I histone deacetylases 1-3 (HDAC) and overall HDAC activity were lower in IL-13-exposed ASM, but calcitriol enhanced HDAC expression/activity. CONCLUSIONS: In asthmatic ASM, Vit D functionality is maintained, allowing calcitriol to reduce the procontractile and proremodeling effects of inflammatory cytokines, particularly IL-13, which is relevant to asthma. These findings highlight a potential role for Vit D in asthma pathogenesis, particularly in the context of airway structure and functional changes early in disease.

2.
Am J Physiol Lung Cell Mol Physiol ; 309(6): L537-42, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26254425

RESUMO

Exposure to moderate hyperoxia in prematurity contributes to subsequent airway dysfunction and increases the risk of developing recurrent wheeze and asthma. The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic GMP (cGMP) axis modulates airway tone by regulating airway smooth muscle (ASM) intracellular Ca(2+) ([Ca(2+)]i) and contractility. However, the effects of hyperoxia on this axis in the context of Ca(2+)/contractility are not known. In developing human ASM, we explored the effects of novel drugs that activate sGC independent of NO on alleviating hyperoxia (50% oxygen)-induced enhancement of Ca(2+) responses to bronchoconstrictor agonists. Treatment with BAY 41-2272 (sGC stimulator) and BAY 60-2770 (sGC activator) increased cGMP levels during exposure to 50% O2. Although 50% O2 did not alter sGCα1 or sGCß1 expression, BAY 60-2770 did increase sGCß1 expression. BAY 41-2272 and BAY 60-2770 blunted Ca(2+) responses to histamine in cells exposed to 50% O2. The effects of BAY 41-2272 and BAY 60-2770 were reversed by protein kinase G inhibition. These novel data demonstrate that BAY 41-2272 and BAY 60-2770 stimulate production of cGMP and blunt hyperoxia-induced increases in Ca(2+) responses in developing ASM. Accordingly, sGC stimulators/activators may be a useful therapeutic strategy in improving bronchodilation in preterm infants.


Assuntos
Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Hidrocarbonetos Fluorados/farmacologia , Hiperóxia/tratamento farmacológico , Miócitos de Músculo Liso/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Brônquios/patologia , Sinalização do Cálcio , Células Cultivadas , GMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Guanilato Ciclase/metabolismo , Humanos , Hiperóxia/enzimologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/embriologia , Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Oxigênio/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Guanilil Ciclase Solúvel , Traqueia/patologia
3.
Biochim Biophys Acta ; 1853(10 Pt A): 2506-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26112987

RESUMO

Moderate hyperoxic exposure in preterm infants contributes to subsequent airway dysfunction and to risk of developing recurrent wheeze and asthma. The regulatory mechanisms that can contribute to hyperoxia-induced airway dysfunction are still under investigation. Recent studies in mice show that hyperoxia increases brain-derived neurotrophic factor (BDNF), a growth factor that increases airway smooth muscle (ASM) proliferation and contractility. We assessed the mechanisms underlying effects of moderate hyperoxia (50% O2) on BDNF expression and secretion in developing human ASM. Hyperoxia increased BDNF secretion, but did not alter endogenous BDNF mRNA or intracellular protein levels. Exposure to hyperoxia significantly increased [Ca2+]i responses to histamine, an effect blunted by the BDNF chelator TrkB-Fc. Hyperoxia also increased ASM cAMP levels, associated with reduced PDE4 activity, but did not alter protein kinase A (PKA) activity or adenylyl cyclase mRNA levels. However, 50% O2 increased expression of Epac2, which is activated by cAMP and can regulate protein secretion. Silencing RNA studies indicated that Epac2, but not Epac1, is important for hyperoxia-induced BDNF secretion, while PKA inhibition did not influence BDNF secretion. In turn, BDNF had autocrine effects of enhancing ASM cAMP levels, an effect inhibited by TrkB and BDNF siRNAs. Together, these novel studies suggest that hyperoxia can modulate BDNF secretion, via cAMP-mediated Epac2 activation in ASM, resulting in a positive feedback effect of BDNF-mediated elevation in cAMP levels. The potential functional role of this pathway is to sustain BDNF secretion following hyperoxic stimulus, leading to enhanced ASM contractility and proliferation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Brônquios/metabolismo , AMP Cíclico/metabolismo , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Traqueia/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Brônquios/patologia , Sinalização do Cálcio/genética , Células Cultivadas , AMP Cíclico/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Hiperóxia/genética , Hiperóxia/metabolismo , Hiperóxia/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Músculo Liso/patologia , Miócitos de Músculo Liso/patologia , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptor trkB , Traqueia/patologia
4.
Sci Transl Med ; 7(284): 284ra60, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904744

RESUMO

Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics.


Assuntos
Asma/patologia , Asma/fisiopatologia , Hiper-Reatividade Brônquica/metabolismo , Hipersensibilidade/patologia , Receptores de Detecção de Cálcio/antagonistas & inibidores , Alérgenos/química , Animais , Asma/metabolismo , Biópsia , Brônquios/metabolismo , Brônquios/patologia , Líquido da Lavagem Broncoalveolar , Broncoconstrição , Cátions , Células HEK293 , Homeostase , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 301(1): L91-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21515660

RESUMO

Neurally derived tachykinins such as substance P (SP) play a key role in modulating airway contractility (especially with inflammation). Separately, the neurotrophin brain-derived neurotrophic factor (BDNF; potentially derived from nerves as well as airway smooth muscle; ASM) and its tropomyosin-related kinase receptor, TrkB, are involved in enhanced airway contractility. In this study, we hypothesized that neurokinins and neurotrophins are linked in enhancing intracellular Ca(2+) concentration ([Ca(2+)](i)) regulation in ASM. In rat ASM cells, 24 h exposure to 10 nM SP significantly increased BDNF and TrkB expression (P < 0.05). Furthermore, [Ca(2+)](i) responses to 1 µM ACh as well as BDNF (30 min) effects on [Ca(2+)](i) regulation were enhanced by prior SP exposure, largely via increased Ca(2+) influx (P < 0.05). The enhancing effect of SP on BDNF signaling was blunted by the neurokinin-2 receptor antagonist MEN-10376 (1 µM, P < 0.05) to a greater extent than the neurokinin-1 receptor antagonist RP-67580 (5 nM). Chelation of extracellular BDNF (chimeric TrkB-F(c); 1 µg/ml), as well as tyrosine kinase inhibition (100 nM K252a), substantially blunted SP effects (P < 0.05). Overnight (24 h) exposure of ASM cells to 50% oxygen increased BDNF and TrkB expression and potentiated both SP- and BDNF-induced enhancement of [Ca(2+)](i) (P < 0.05). These results suggest a novel interaction between SP and BDNF in regulating agonist-induced [Ca(2+)](i) regulation in ASM. The autocrine mechanism we present here represents a new area in the development of bronchoconstrictive reflex response and airway hyperreactive disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Músculo Liso/metabolismo , Sistema Respiratório/metabolismo , Substância P/metabolismo , Acetilcolina/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cálcio/metabolismo , Hiperóxia/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Modelos Biológicos , Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Receptores da Neurocinina-1/metabolismo , Receptores da Neurocinina-2/metabolismo , Substância P/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA