Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(6): 138, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733408

RESUMO

KEY MESSAGE: The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 µM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Salicilatos , Tylenchoidea , Glycine max/genética , Glycine max/parasitologia , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Salicilatos/metabolismo , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Resistência à Doença/genética
2.
ACS Sustain Chem Eng ; 12(5): 1897-1910, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38333206

RESUMO

Economically viable production of biobased products and fuels requires high-yielding, high-quality, sustainable process-advantaged crops, developed using bioengineering or advanced breeding approaches. Understanding which crop phenotypic traits have the largest impact on biofuel economics and sustainability outcomes is important for the targeted feedstock crop development. Here, we evaluated biomass yield and cell-wall composition traits across a large natural variant population of switchgrass (Panicum virgatum L.) grown across three common garden sites. Samples from 331 switchgrass genotypes were collected and analyzed for carbohydrate and lignin components. Considering plant survival and biomass after multiple years of growth, we found that 84 of the genotypes analyzed may be suited for commercial production in the southeastern U.S. These genotypes show a range of growth and compositional traits across the population that are apparently independent of each other. We used these data to conduct techno-economic analyses and life cycle assessments evaluating the performance of each switchgrass genotype under a standard cellulosic ethanol process model with pretreatment, added enzymes, and fermentation. We find that switchgrass yield per area is the largest economic driver of the minimum fuel selling price (MSFP), ethanol yield per hectare, global warming potential (GWP), and cumulative energy demand (CED). At any yield, the carbohydrate content is significant but of secondary importance. Water use follows similar trends but has more variability due to an increased dependence on the biorefinery model. Analyses presented here highlight the primary importance of plant yield and the secondary importance of carbohydrate content when selecting a feedstock that is both economical and sustainable.

3.
Plants (Basel) ; 12(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836134

RESUMO

Climate-smart and sustainable crops are needed for the future. Engineering crops for tolerance of both abiotic and biotic stress is one approach. The accumulation of trehalose, controlled through trehalose-6-phosphate synthase (TPS) or OtsA and trehalose-6-phosphate phosphatase (TPP) or OtsB genes in microbes, is known to provide protection for many microbial and fungal species against abiotic stress. The effect of trehalose accumulation in plant species is less understood. Here, we studied the heterologous expression of Escherichia coli OtsB in potato (Solanum tuberosum var. 'Desiree') with regards to stress tolerance. The performance of transgenic lines was assessed in both growth chambers and greenhouse mesocosms. Overexpressing potato OtsB lines significantly increased resilience to heat, photoperiod, herbivory, and competition when compared with wildtype plants. Most strikingly, when subjected to high temperatures, transgenic lines exhibited a significantly lower reduction in tuber yield ranging from 40% to 77%, while wildtype plants experienced a 95% decrease in tuber yield. When exposed to competitors in a selected StSP3D::OtsB line, tuber yield was 1.6 times higher than wildtype. Furthermore, transgenic lines performed significantly better under low-nutrient regimes: under competition, yield increased by 1.5-fold. Together, these results demonstrate that increased trehalose has the potential to create more resistant and stable crop plants.

4.
Plants (Basel) ; 12(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37447112

RESUMO

Nearly three decades have passed since the first commercial cultivation of genetically engineered (GE) crops [...].

5.
Trends Biotechnol ; 40(12): 1454-1468, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36241578

RESUMO

Plant-based biosynthesis of fuels, chemicals, and materials promotes environmental sustainability, which includes decreases in greenhouse gas emissions, water pollution, and loss of biodiversity. Advances in plant synthetic biology (synbio) should improve precision and efficacy of genetic engineering for sustainability. Applicable synbio innovations include genome editing, gene circuit design, synthetic promoter development, gene stacking technologies, and the design of environmental sensors. Moreover, recent advancements in developing spatially resolved and single-cell omics contribute to the discovery and characterization of cell-type-specific mechanisms and spatiotemporal gene regulations in distinct plant tissues for the expression of cell- and tissue-specific genes, resulting in improved bioproduction. This review highlights recent plant synbio progress and new single-cell molecular profiling towards sustainable biofuel and biomaterial production.


Assuntos
Biocombustíveis , Biologia Sintética , Plantas/genética , Engenharia Genética , Biomassa
6.
Plants (Basel) ; 11(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35890499

RESUMO

Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.

7.
Plants (Basel) ; 11(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35567103

RESUMO

The wide dispersion of glyphosate-resistant (GR) horseweed (Conyza canadensis (L.) Cronquist: synonym Erigeron canadensis L.) biotypes has been reported in agricultural fields in many states. GR traits may be transferred through seeds or pollen from fields with existing GR horseweed prevalence to surrounding fields. Understanding seed production and movement is essential when characterizing and predicting the spread of GR horseweed, yet a literature review indicates that there are no experimental data on dynamic (hourly) seed production and horizontal dispersion and deposition from horseweed. To obtain the dynamic data, two field experiments were performed, one in Illinois and one in Tennessee, USA in 2013 and 2014, respectively. Seed concentration and deposition along with atmospheric conditions were measured with samplers in the Illinois (184 m × 46 m, natural plants, density = 9.5 plants/m2) and Tennessee (6 m × 6 m, cultivated plants, density = 4 plants/m2) experimental fields and their surrounding areas along the downwind direction up to 1 km horizontally and 100 m vertically in the Illinois field and up to 32 m horizontally and 5 m vertically in the Tennessee field. The dynamic seed source strengths (emission rates) measured during two entire seed-shedding seasons were reported, ranging from 0 to 0.41 grains/plant/s for Illinois and ranging from 0 to 0.56 grains/plant/s for Tennessee. The average total seed production was an estimated 122,178 grains/plant for the duration of the Illinois experiment and 94,146 grains/plant for Tennessee. Seeds trapped by Rotorod samplers attached beneath two balloons in the Illinois field experiment were observed at heights of 80 to 100 m, indicating the possibility of long-distance transport. Normalized (by source data) seed deposition with distance followed a negative power exponential function. Seed emission and transport were affected mainly by wind speed. This study is the first to investigate dynamic horseweed seed emission, dispersion, and deposition for an entire seed-shedding season. The results will aid in the management of GR horseweed. The potential for regional effects of horseweed invasion may require all farmers to control horseweed in their individual fields.

8.
Plants (Basel) ; 10(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34961199

RESUMO

Unmanned aerial vehicles (UAVs) provide an intermediate scale of spatial and spectral data collection that yields increased accuracy and consistency in data collection for morphological and physiological traits than satellites and expanded flexibility and high-throughput compared to ground-based data collection. In this study, we used UAV-based remote sensing for automated phenotyping of field-grown switchgrass (Panicum virgatum), a leading bioenergy feedstock. Using vegetation indices calculated from a UAV-based multispectral camera, statistical models were developed for rust disease caused by Puccinia novopanici, leaf chlorophyll, nitrogen, and lignin contents. For the first time, UAV remote sensing technology was used to explore the potentials for multiple traits associated with sustainable production of switchgrass, and one statistical model was developed for each individual trait based on the statistical correlation between vegetation indices and the corresponding trait. Also, for the first time, lignin content was estimated in switchgrass shoots via UAV-based multispectral image analysis and statistical analysis. The UAV-based models were verified by ground-truthing via correlation analysis between the traits measured manually on the ground-based with UAV-based data. The normalized difference red edge (NDRE) vegetation index outperformed the normalized difference vegetation index (NDVI) for rust disease and nitrogen content, while NDVI performed better than NDRE for chlorophyll and lignin content. Overall, linear models were sufficient for rust disease and chlorophyll analysis, but for nitrogen and lignin contents, nonlinear models achieved better results. As the first comprehensive study to model switchgrass sustainability traits from UAV-based remote sensing, these results suggest that this methodology can be utilized for switchgrass high-throughput phenotyping in the field.

9.
Plant Biotechnol J ; 19(7): 1354-1369, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33471413

RESUMO

Abiotic stress resistance traits may be especially crucial for sustainable production of bioenergy tree crops. Here, we show the performance of a set of rationally designed osmotic-related and salt stress-inducible synthetic promoters for use in hybrid poplar. De novo motif-detecting algorithms yielded 30 water-deficit (SD) and 34 salt stress (SS) candidate DNA motifs from relevant poplar transcriptomes. We selected three conserved water-deficit stress motifs (SD18, SD13 and SD9) found in 16 co-expressed gene promoters, and we discovered a well-conserved motif for salt response (SS16). We characterized several native poplar stress-inducible promoters to enable comparisons with our synthetic promoters. Fifteen synthetic promoters were designed using various SD and SS subdomains, in which heptameric repeats of five-to-eight subdomain bases were fused to a common core promoter downstream, which, in turn, drove a green fluorescent protein (GFP) gene for reporter assays. These 15 synthetic promoters were screened by transient expression assays in poplar leaf mesophyll protoplasts and agroinfiltrated Nicotiana benthamiana leaves under osmotic stress conditions. Twelve synthetic promoters were induced in transient expression assays with a GFP readout. Of these, five promoters (SD18-1, SD9-2, SS16-1, SS16-2 and SS16-3) endowed higher inducibility under osmotic stress conditions than native promoters. These five synthetic promoters were stably transformed into Arabidopsis thaliana to study inducibility in whole plants. Herein, SD18-1 and SD9-2 were induced by water-deficit stress, whereas SS16-1, SS16-2 and SS16-3 were induced by salt stress. The synthetic biology design pipeline resulted in five synthetic promoters that outperformed endogenous promoters in transgenic plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/genética
10.
Front Plant Sci ; 11: 843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636863

RESUMO

Switchgrass (Panicum virgatum L.) is a lignocellulosic perennial grass with great potential in bioenergy field. Lignocellulosic bioenergy crops are mostly resistant to cell wall deconstruction, and therefore yield suboptimal levels of biofuel. The one-carbon pathway (also known as C1 metabolism) is critical for polymer methylation, including that of lignin and hemicelluloses in cell walls. Folylpolyglutamate synthetase (FPGS) catalyzes a biochemical reaction that leads to the formation of folylpolyglutamate, an important cofactor for many enzymes in the C1 pathway. In this study, the putatively novel switchgrass PvFPGS1 gene was identified and its functional role in cell wall composition and biofuel production was examined by RNAi knockdown analysis. The PvFPGS1-downregulated plants were analyzed in the field over three growing seasons. Transgenic plants with the highest reduction in PvFPGS1 expression grew slower and produced lower end-of-season biomass. Transgenic plants with low-to-moderate reduction in PvFPGS1 transcript levels produced equivalent biomass as controls. There were no significant differences observed for lignin content and syringyl/guaiacyl lignin monomer ratio in the low-to-moderately reduced PvFPGS1 transgenic lines compared with the controls. Similarly, sugar release efficiency was also not significantly different in these transgenic lines compared with the control lines. However, transgenic plants produced up to 18% more ethanol while maintaining congruent growth and biomass as non-transgenic controls. Severity of rust disease among transgenic and control lines were not different during the time course of the field experiments. Altogether, the unchanged lignin content and composition in the low-to-moderate PvFPGS1-downregulated lines may suggest that partial downregulation of PvFPGS1 expression did not impact lignin biosynthesis in switchgrass. In conclusion, the manipulation of PvFPGS1 expression in bioenergy crops may be useful to increase biofuel potential with no growth penalty or increased susceptibility to rust in feedstock.

11.
Plant Cell Rep ; 39(2): 245-257, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31728703

RESUMO

KEY MESSAGE: A novel and robust lipofection-mediated transfection approach for the use of DNA-free Cas9/gRNA RNP for gene editing has demonstrated efficacy in plant cells. Precise genome editing has been revolutionized by CRISPR/Cas9 systems. DNA-based delivery of CRISPR/Cas9 is widely used in various plant species. However, protein-based delivery of the in vitro translated Cas9/guide RNA (gRNA) ribonucleoprotein (RNP) complex into plant cells is still in its infancy even though protein delivery has several advantages. These advantages include DNA-free delivery, gene-edited host plants that are not transgenic, ease of use, low cost, relative ease to be adapted to high-throughput systems, and low off-target cleavage rates. Here, we show a novel lipofection-mediated transfection approach for protein delivery of the preassembled Cas9/gRNA RNP into plant cells for genome editing. Two lipofection reagents, Lipofectamine 3000 and RNAiMAX, were adapted for successful delivery into plant cells of Cas9/gRNA RNP. A green fluorescent protein (GFP) reporter was fused in-frame with the C-terminus of the Cas9 protein and the fusion protein was successfully delivered into non-transgenic tobacco cv. 'Bright Yellow-2' (BY2) protoplasts. The optimal efficiencies for Lipofectamine 3000- and RNAiMAX-mediated protein delivery were 66% and 48%, respectively. Furthermore, we developed a biolistic method for protein delivery based on the known proteolistics technique. A transgenic tobacco BY2 line expressing an orange fluorescence protein reporter pporRFP was targeted for knockout. We found that the targeted mutagenesis frequency for our Lipofectamine 3000-mediated protein delivery was 6%. Our results showed that the newly developed lipofection-mediated transfection approach is robust for the use of the DNA-free Cas9/gRNA technology for genome editing in plant cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Células Vegetais/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Agrobacterium , Biolística/métodos , Linhagem Celular , DNA , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutagênese , Plantas Geneticamente Modificadas , Protoplastos , Nicotiana/genética
13.
J Agric Food Chem ; 66(33): 8744-8752, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30028607

RESUMO

Dual production of biofuels and chemicals can increase the economic value of lignocellulosic bioenergy feedstocks. We compared the bioenergy potential of several essential oil (EO) crops with switchgrass ( Panicum virgatum L.), a crop chosen to benchmark biomass and lignocellulosic biofuel production. The EO crops of interest were peppermint ( Mentha × piperita L.), "Scotch" spearmint ( Mentha × gracilis Sole), Japanese cornmint ( Mentha canadensis L.), and sweet sagewort ( Artemisia annua L.). We also assessed each crop for EO production in a marginal production environment in Wyoming, USA, with irrigation and nitrogen (N) rates using a split-plot experimental design. Oil content ranged from 0.31 to 0.4% for Japanese cornmint, 0.23 to 0.26% for peppermint, 0.38 to 0.5% for spearmint, and the overall mean of sweet sagewort was 0.34%. Oil yields ranged from (in kg ha-1) 34 to 165 in Japanese cornmint, 25 to 108 in peppermint, 29.3 to 126 in spearmint, and 39.7 in sweet sagewort. EO production, but not composition, was sensitive to N fertilization. The alternative bioenergy crops and switchgrass produced similar amounts of ethanol from bench-scale simultaneous saccharification and fermentation assays. Value-added incomes from the EO proceeds were estimated to be between $1055 and $5132 ha-1 from peppermint, $1309 and $5580 ha-1 from spearmint, $510 and $2460 ha-1 from Japanese cornmint, and $3613 ha-1 from sweet sagewort under Wyoming growth conditions. The advantage of the proposed crops over traditional lignocellulosic species is the production of high-value natural products in addition to lignocellulosic biofuel production.


Assuntos
Artemisia/química , Biocombustíveis/análise , Mentha piperita/química , Mentha spicata/química , Óleos Voláteis/química , Panicum/química , Etanol/análise , Óleos Voláteis/isolamento & purificação
14.
Plant Biotechnol J ; 15(6): 688-697, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27862852

RESUMO

Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4-KD, miRNA156-OE, MYB4-OE, COMT-KD and FPGS-KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second- versus the first-year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second-year growth of transgenics targeted for wall modification, GAUT4-KD, MYB4-OE, COMT-KD and FPGS-KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next-generation bio-feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.


Assuntos
Panicum/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Biocombustíveis , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
15.
Plant Biotechnol J ; 15(4): 510-519, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27734633

RESUMO

Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here, we report the functional characterization of one member of the soybean TPS gene family, which was designated GmAFS. Recombinant GmAFS produced in Escherichia coli catalysed the formation of a sesquiterpene (E,E)-α-farnesene. GmAFS is closely related to (E,E)-α-farnesene synthase gene from apple, both phylogenetically and structurally. GmAFS was further investigated for its biological role in defence against nematodes and insects. Soybean cyst nematode (SCN) is the most important pathogen of soybean. The expression of GmAFS in a SCN-resistant soybean was significantly induced by SCN infection compared with the control, whereas its expression in a SCN-susceptible soybean was not changed by SCN infection. Transgenic hairy roots overexpressing GmAFS under the control of the CaMV 35S promoter were generated in an SCN-susceptible soybean line. The transgenic lines showed significantly higher resistance to SCN, which indicates that GmAFS contributes to the resistance of soybean to SCN. In soybean leaves, the expression of GmAFS was found to be induced by Tetranychus urticae (two-spotted spider mites). Exogenous application of methyl jasmonate to soybean plants also induced the expression of GmAFS in leaves. Using headspace collection combined with gas chromatography-mass spectrometry analysis, soybean plants that were infested with T. urticae were shown to emit a mixture of volatiles with (E,E)-α-farnesene as one of the most abundant constituents. In summary, this study showed that GmAFS has defence roles in both below-ground and above-ground organs of soybean against nematodes and insects, respectively.


Assuntos
Glycine max/enzimologia , Glycine max/parasitologia , Insetos/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/parasitologia , Pirofosfatases/metabolismo , Animais , Regulação da Expressão Gênica de Plantas , Nematoides/patogenicidade , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Pirofosfatases/genética , Glycine max/genética
16.
Plant Biotechnol J ; 14(11): 2100-2109, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27064027

RESUMO

Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.


Assuntos
Glycine max/genética , Glycine max/parasitologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Tylenchoidea/fisiologia , Animais , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Locos de Características Quantitativas , Ácido Salicílico/metabolismo , Glycine max/metabolismo
17.
Plant Biotechnol J ; 14(5): 1281-90, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26503160

RESUMO

Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant production for several crops where gene flow is an issue. Here, we demonstrate the expression of the restriction endonuclease EcoRI under the control of the tomato pollen-specific LAT52 promoter is an effective method for generating selective male sterility in Nicotiana tabacum (tobacco). Of nine transgenic events recovered, four events had very high bioconfinement with tightly controlled EcoRI expression in pollen and negligible-to-no expression other plant tissues. Transgenic plants had normal morphology wherein vegetative growth and reproductivity were similar to nontransgenic controls. In glasshouse experiments, transgenic lines were hand-crossed to both male-sterile and emasculated nontransgenic tobacco varieties. Progeny analysis of 16 000-40 000 seeds per transgenic line demonstrated five lines approached (>99.7%) or attained 100% bioconfinement for one or more generations. Bioconfinement was again demonstrated at or near 100% under field conditions where four transgenic lines were grown in close proximity to male-sterile tobacco, and 900-2100 seeds per male-sterile line were analysed for transgenes. Based upon these results, we conclude EcoRI-driven selective male sterility holds practical potential as a safe and reliable transgene bioconfinement strategy. Given the mechanism of male sterility, this method could be applicable to any plant species.


Assuntos
Nicotiana/genética , Infertilidade das Plantas/genética , Desoxirribonuclease EcoRI/metabolismo , Fluxo Gênico , Engenharia Genética , Hibridização Genética , Especificidade de Órgãos , Plantas Geneticamente Modificadas , Pólen/genética , Regiões Promotoras Genéticas/genética , Sementes/genética , Transgenes
18.
Ecol Evol ; 5(13): 2646-58, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26257877

RESUMO

Horseweed (Conyza canadensis) is a problem weed in crop production because of its evolved resistance to glyphosate and other herbicides. Although horseweed is mainly self-pollinating, glyphosate-resistant (GR) horseweed can pollinate glyphosate-susceptible (GS) horseweed. To the best of our knowledge, however, there are no available data on horseweed pollen production, dispersion, and deposition relative to gene flow and the evolution of resistance. To help fill this knowledge gap, a 43-day field study was performed in Champaign, Illinois, USA in 2013 to characterize horseweed atmospheric pollen emission, dispersion, and deposition. Pollen concentration and deposition, coupled with atmospheric data, were measured in a source field (180 m by 46 m) and its surrounding areas up to 1 km downwind horizontally and up to 100 m vertically. The source strength (emission rate) ranged from 0 to 140 pollen grains per plant per second (1170 to 2.1×10(6) per plant per day). For the life of the study, the estimated number of pollen grains generated from this source field was 10.5×10(10) (2.3×10(6) per plant). The release of horseweed pollen was not strongly correlated to meteorological data and may be mainly determined by horseweed physiology. Horseweed pollen reached heights of 80 to100 m, making long-distance transport possible. Normalized (by source data) pollen deposition with distance followed a negative-power exponential curve. Normalized pollen deposition was 2.5% even at 480 m downwind from the source edge. Correlation analysis showed that close to or inside the source field at lower heights (≤3 m) vertical transport was related to vertical wind speed, while horizontal pollen transport was related to horizontal wind speed. High relative humidity prevented pollen transport at greater heights (3-100 m) and longer distances (0-1000 m) from the source. This study can contribute to the understanding of how herbicide-resistance weeds or invasive plants affect ecology through wind-mediated pollination and invasion.

19.
Plant Biotechnol J ; 13(3): 337-54, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25707745

RESUMO

Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts.


Assuntos
MicroRNAs/genética , Panicum/genética , Biocombustíveis , Biomassa , Parede Celular/metabolismo , Produtos Agrícolas , Lignina/metabolismo , Panicum/crescimento & desenvolvimento , Panicum/metabolismo
20.
Plant Biotechnol J ; 13(5): 636-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25400275

RESUMO

Gibberellin 2-oxidases (GA2oxs) are a group of 2-oxoglutarate-dependent dioxygenases that catalyse the deactivation of bioactive GA or its precursors through 2ß-hydroxylation reaction. In this study, putatively novel switchgrass C20 GA2ox genes were identified with the aim of genetically engineering switchgrass for improved architecture and reduced biomass recalcitrance for biofuel. Three C20 GA2ox genes showed differential regulation patterns among tissues including roots, seedlings and reproductive parts. Using a transgenic approach, we showed that overexpression of two C20 GA2ox genes, that is PvGA2ox5 and PvGA2ox9, resulted in characteristic GA-deficient phenotypes with dark-green leaves and modified plant architecture. The changes in plant morphology appeared to be associated with GA2ox transcript abundance. Exogenous application of GA rescued the GA-deficient phenotypes in transgenic lines. Transgenic semi-dwarf lines displayed increased tillering and reduced lignin content, and the syringyl/guaiacyl lignin monomer ratio accompanied by the reduced expression of lignin biosynthetic genes compared to nontransgenic plants. A moderate increase in the level of glucose release in these transgenic lines might be attributed to reduced biomass recalcitrance as a result of reduced lignin content and lignin composition. Our results suggest that overexpression of GA2ox genes in switchgrass is a feasible strategy to improve plant architecture and reduce biomass recalcitrance for biofuel.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Oxigenases de Função Mista/genética , Panicum/enzimologia , Biocombustíveis , Biomassa , Regulação Enzimológica da Expressão Gênica , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Panicum/genética , Panicum/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...