Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 460: 132490, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703728

RESUMO

Hydraulic fracturing for oil and gas extraction produces large volumes of wastewater, termed flowback and produced water (FPW), that are highly saline and contain a variety of organic and inorganic contaminants. In the present study, FPW samples from ten hydraulically fractured wells, across two geologic formations were collected at various timepoints. Samples were analyzed to determine spatial and temporal variation in their inorganic composition. Results indicate that FPW composition varied both between formations and within a single formation, with large compositional changes occurring over short distances. Temporally, all wells showed a time-dependent increase in inorganic elements, with total dissolved solids increasing by up to 200,000 mg/L over time, primarily due to elements associated with salinity (Cl, Na, Ca, Mg, K). Toxicological analysis of a subset of the FPW samples showed median lethal concentrations (LC50) of FPW to the aquatic invertebrate Daphnia magna were highly variable, with the LC50 values ranging from 1.16% to 13.7% FPW. Acute toxicity of FPW significantly correlated with salinity, indicating salinity is a primary driver of FPW toxicity, however organic components also contributed to toxicity. This study provides insight into spatiotemporal variability of FPW composition and illustrates the difficulty in predicting aquatic risk associated with FPW.


Assuntos
Fraturamento Hidráulico , Animais , Daphnia , Epicloroidrina , Dose Letal Mediana , Água
2.
Environ Sci Technol ; 57(6): 2380-2392, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724135

RESUMO

Hydraulic fracturing extracts oil and gas through the injection of water and proppants into subterranean formations. These injected fluids mix with the host rock formation and return to the surface as a complex wastewater containing salts, metals, and organic compounds, termed flowback and produced water (FPW). Previous research indicates that FPW is toxic to Daphnia magna (D. magna), impairing reproduction, molting, and maturation time; however, recovery from FPW has not been extensively studied. Species unable to recover have drastic impacts on populations on the ecological scale; thus, this study sought to understand if recovery from an acute 48 h FPW exposure was possible in the freshwater invertebrate, D. magna by using a combination of physiological and molecular analyses. FPW (0.75%) reduced reproduction by 30% and survivorship to 32% compared to controls. System-level quantitative proteomic analyses demonstrate extensive perturbation of metabolism and protein transport in both 0.25 and 0.75% FPW treatments after a 48 h FPW exposure. Collectively, our data indicate that D. magna are unable to recover from acute 48 h exposures to ≥0.25% FPW, as evidence of toxicity persists for at least 19 days post-exposure. This study highlights the importance of considering persisting effects following FPW remediation when modeling potential spill scenarios.


Assuntos
Fraturamento Hidráulico , Poluentes Químicos da Água , Animais , Daphnia/fisiologia , Proteômica , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Água
3.
Sci Total Environ ; 750: 141707, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182172

RESUMO

Ultraviolet (UV) filters are compounds utilized in many manufacturing processes and personal care products such as sunscreen to protect against UV-radiation. These highly lipophilic compounds are emerging contaminants of concern in aquatic environments due to their previously observed potential to bioaccumulate and exert toxic effects in marine ecosystems. Currently, research into the toxic effects of UV filter contamination of freshwater ecosystems is lacking, thus the present study sought to model the effects of acute and chronic developmental exposures to UV filters avobenzone, oxybenzone and octocrylene as well as a mixture of these substances in the freshwater invertebrate, Daphnia magna, at environmentally realistic concentrations. Median 48-hour effect and lethal concentrations were determined to be in the low mg/L range, with the exception of octocrylene causing 50% immobilization near environmental concentrations. 48-hour acute developmental exposures proved to behaviourally impair daphnid phototactic response; however, recovery was observed following a 19-day post-exposure period. Although no physiological disruptions were detected in acutely exposed daphnids, delayed mortality was observed up to seven days post-exposure at 200 µg/L of avobenzone and octocrylene. 21-day chronic exposure to 7.5 µg/L octocrylene yielded complete mortality within 7 days, while sublethal chronic exposure to avobenzone increased Daphnia reproductive output and decreased metabolic rate. 2 µg/L oxybenzone induced a 25% increase in metabolic rate of adult daphnids, and otherwise caused no toxic effects at this dose. These data indicate that UV filters can exert toxic effects in freshwater invertebrates, therefore further study is required. It is clear that the most well-studied UV filter, oxybenzone, may not be the most toxic to Daphnia, as both avobenzone and octocrylene induced behavioural and physiological disruption at environmentally realistic concentrations.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Ecossistema , Protetores Solares/toxicidade , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...