Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712163

RESUMO

Importance: The X chromosome has remained enigmatic in Alzheimer's disease (AD), yet it makes up 5% of the genome and carries a high proportion of genes expressed in the brain, making it particularly appealing as a potential source of unexplored genetic variation in AD. Objectives: Perform the first large-scale X chromosome-wide association study (XWAS) of AD. Primary analyses are non-stratified, while secondary analyses evaluate sex-stratified effects. Design: Meta-analysis of genetic association studies in case-control, family-based, population-based, and longitudinal AD-related cohorts from the US Alzheimer's Disease Genetics Consortium (ADGC) and Alzheimer's Disease Sequencing Project (ADSP), the UK Biobank (UKB), the Finnish health registry (FinnGen), and the US Million Veterans Program (MVP). Risk for AD evaluated through case-control logistic regression analyses. Data were analyzed between January 2023 and March 2024. Setting: Genetic data available from high-density single-nucleotide polymorphism (SNP) microarrays and whole-genome sequencing (WGS). Summary statistics for multi-tissue expression and protein quantitative trait loci (QTL) available from published studies, enabling follow-up genetic colocalization analyses. Participants: 1,629,863 eligible participants were selected from referred and volunteer samples, of which 477,596 were excluded for analysis exclusion criteria. Number of participants who declined to participate in original studies was not available. Main Outcome and Measures: Risk for AD (odds ratio; OR) with 95% confidence intervals (CI). Associations were considered at X-chromosome-wide (P-value<1e-5) and genome-wide (P-value<5e-8) significance. Results: Analyses included 1,152,284 non-Hispanic White European ancestry subjects (57.3% females), including 138,558 cases. 6 independent genetic loci passed X-chromosome-wide significance, with 4 showing support for causal links between the genetic signal for AD and expression of nearby genes in brain and non-brain tissues. One of these 4 loci passed conservative genome-wide significance, with its lead variant centered on an intron of SLC9A7 (OR=1.054, 95%-CI=[1.035, 1.075]) and colocalization analyses prioritizing both the SLC9A7 and nearby CHST7 genes. Conclusion and Relevance: We performed the first large-scale XWAS of AD and identified the novel SLC9A7 locus. SLC9A7 regulates pH homeostasis in Golgi secretory compartments and is anticipated to have downstream effects on amyloid beta accumulation. Overall, this study significantly advances our knowledge of AD genetics and may provide novel biological drug targets.

2.
Neuron ; 112(7): 1110-1116.e5, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301647

RESUMO

The ε4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). Knockdown of ε4 may provide a therapeutic strategy for AD, but the effect of APOE loss of function (LoF) on AD pathogenesis is unknown. We searched for APOE LoF variants in a large cohort of controls and patients with AD and identified seven heterozygote carriers of APOE LoF variants. Five carriers were controls (aged 71-90 years), one carrier was affected by progressive supranuclear palsy, and one carrier was affected by AD with an unremarkable age at onset of 75 years. Two APOE ε3/ε4 controls carried a stop-gain affecting ε4: one was cognitively normal at 90 years and had no neuritic plaques at autopsy; the other was cognitively healthy at 79 years, and lumbar puncture at 76 years showed normal levels of amyloid. These results suggest that ε4 drives AD risk through the gain of abnormal function and support ε4 knockdown as a viable therapeutic option.


Assuntos
Doença de Alzheimer , Humanos , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genótipo , Longevidade/genética
3.
J Neurosci ; 44(5)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38123991

RESUMO

Maintaining precise synaptic contacts between neuronal partners is critical to ensure the proper functioning of the mammalian central nervous system (CNS). Diverse cell recognition molecules, such as classic cadherins (Cdhs), are part of the molecular machinery mediating synaptic choices during development and synaptic maintenance. Yet, the principles governing neuron-neuron wiring across diverse CNS neuron types remain largely unknown. The retinotectal synapses, connections from the retinal ganglion cells (RGCs) to the superior collicular (SC) neurons, offer an ideal experimental system to reveal molecular logic underlying synaptic choices and formation. This is due to the retina's unidirectional and laminar-restricted projections to the SC and the large databases of presynaptic RGC subtypes and postsynaptic SC neuronal types. Here, we focused on determining the role of Type II Cdhs in wiring the retinotectal synapses. We surveyed Cdhs expression patterns at neuronal resolution and revealed that Cdh13 is enriched in the wide-field neurons in the superficial SC (sSC). In either the Cdh13 null mutant or selective adult deletion within the wide-field neurons, there is a significant reduction of spine densities in the distal dendrites of these neurons in both sexes. Additionally, Cdh13 removal from presynaptic RGCs reduced dendritic spines in the postsynaptic wide-field neurons. Cdh13-expressing RGCs use differential mechanisms than αRGCs and On-Off Direction-Selective Ganglion Cells (ooDSGCs) to form specific retinotectal synapses. The results revealed a selective transneuronal interaction mediated by Cdh13 to maintain proper retinotectal synapses in vivo.


Assuntos
Células Ganglionares da Retina , Sinapses , Animais , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Colículos Superiores/fisiologia , Dendritos/fisiologia , Caderinas/genética , Caderinas/metabolismo , Mamíferos
4.
medRxiv ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37547016

RESUMO

The ε4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor for sporadic Alzheimer's Disease (AD). Knockdown of this allele may provide a therapeutic strategy for AD, but the effect of APOE loss-of-function (LoF) on AD pathogenesis is unknown. We searched for APOE LoF variants in a large cohort of older controls and patients with AD and identified six heterozygote carriers of APOE LoF variants. Five carriers were controls (ages 71-90) and one was an AD case with an unremarkable age-at-onset between 75-79. Two APOE ε3/ε4 controls (Subjects 1 and 2) carried a stop-gain affecting the ε4 allele. Subject 1 was cognitively normal at 90+ and had no neuritic plaques at autopsy. Subject 2 was cognitively healthy within the age range 75-79 and underwent lumbar puncture at between ages 75-79 with normal levels of amyloid. The results provide the strongest human genetics evidence yet available suggesting that ε4 drives AD risk through a gain of abnormal function and support knockdown of APOE ε4 or its protein product as a viable therapeutic option.

5.
medRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461476

RESUMO

Background and Objectives: Single nucleotide variants near TMEM106B associate with risk of frontotemporal lobar dementia with TDP-43 inclusions (FTLD-TDP) and Alzheimer's disease (AD) in genome-wide association studies (GWAS), but the causal variant at this locus remains unclear. Here we asked whether a novel structural variant on TMEM106B is the causal variant. Methods: An exploratory analysis identified structural variants on neurodegeneration-related genes. Subsequent analyses focused on an Alu element insertion on the 3'UTR of TMEM106B. This study included data from longitudinal aging and neurogenerative disease cohorts at Stanford University, case-control cohorts in the Alzheimer's Disease Sequencing Project (ADSP), and expression and proteomics data from Washington University in St. Louis (WUSTL). 432 individuals from two Stanford aging cohorts were whole-genome long-read and short-read sequenced. 16,906 samples from ADSP were short-read sequenced. Genotypes, transcriptomics, and proteomics data were available in 1,979 participants from an aging and dementia cohort at WUSTL. Selection criteria were specific to each cohort. In primary analyses, the linkage disequilibrium between the TMEM106B locus variants in the FTLD-TDP GWAS and the 3'UTR insertion was estimated. We then estimated linkage by ancestry in the ADSP and evaluated the effect of the TMEM106B lead variant on mRNA and protein levels. Results: The primary analysis included 432 participants (52.5% females, age range 45-92 years old). We identified a 316 bp Alu insertion overlapping the TMEM106B 3'UTR tightly linked with top GWAS variants rs3173615(C) and rs1990622(A). In ADSP European-ancestry participants, this insertion is in equivalent linkage with rs1990622(A) (R2=0.962, D'=0.998) and rs3173615(C) (R2=0.960, D'=0.996). In African-ancestry participants, the insertion is in stronger linkage with rs1990622(A) (R2=0.992, D'=0.998) than with rs3173615(C) (R2=0.811, D'=0.994). In public datasets, rs1990622 was consistently associated with TMEM106B protein levels but not with mRNA expression. In the WUSTL dataset, rs1990622 is associated with TMEM106B protein levels in plasma and cerebrospinal fluid, but not with TMEM106B mRNA expression. Discussion: We identified a novel Alu element insertion in the 3'UTR of TMEM106B in tight linkage with the lead FTLD-TDP risk variant. The lead variant is associated with TMEM106B protein levels, but not expression. The 3'UTR insertion is a lead candidate for the causal variant at this complex locus, pending confirmation with functional studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...