Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 234: 464-475, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641357

RESUMO

Residential development is one of the most intensive and widespread land uses in the United States, with substantial environmental impacts, including changes in forest cover. However, the relationships between forest cover and residential development are complex. Contemporary forest cover reflects multiple factors, including housing density, time since development, historical land cover, and land management since development. We investigated how forest cover varies with housing density, housing age, and household income over a range of development intensities, in six ecoregions within New York State, Wisconsin, and Colorado. We find areas with residential development do retain important forest resources: across landscapes they are typically more forested than areas that remain undeveloped. However, forest cover consistently had a negative, inverse relationship with housing density, across study areas. Relationships between forest cover and housing age and household income were less common and often restricted to only portions of a given region, according to geographically weighted regression analyses. A better understanding of how forest cover varies with residential development, outside of the typically studied urban areas, will be essential to maintaining ecosystem function and services in residential landscapes.


Assuntos
Ecossistema , Habitação , Colorado , Conservação dos Recursos Naturais , Florestas , New York , Classe Social , Estados Unidos , Wisconsin
2.
Environ Manage ; 62(2): 210-228, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29766223

RESUMO

Becoming a fire adapted community that can coexist with wildfire is envisioned as a continuous, iterative process of adaptation, but it is unclear how communities may pursue adaptation. Experience with wildfire and other natural hazards suggests that disasters may open a "window of opportunity" leading to local government policy changes. We examined how destructive wildfire affected progress toward becoming fire adapted in eight locations in the United States. We found that community-level adaptation following destructive fires is most common where destructive wildfire is novel and there is already government capacity and investment in wildfire regulation and land use planning. External funding, staff capacity, and the presence of issue champions combined to bring about change after wildfire. Locations with long histories of destructive wildfire, extensive previous investment in formal wildfire regulation and mitigation, or little government and community capacity to manage wildfire saw fewer changes. Across diverse settings, communities consistently used the most common tools and actions for wildfire mitigation and planning. Nearly all sites reported changes in wildfire suppression, emergency response, and hazard planning documents. Expansion in voluntary education and outreach programs to increase defensible space was also common, occurring in half of our sites, but land use planning and regulations remained largely unchanged. Adaptation at the community and local governmental level therefore may not axiomatically follow from each wildfire incident, nor easily incorporate formal approaches to minimizing land use and development in hazardous environments, but in many sites wildfire was a focusing event that inspired reflection and adaptation.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Política Ambiental/legislação & jurisprudência , Governo Local , Incêndios Florestais/legislação & jurisprudência , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/tendências , Desastres , Política Ambiental/economia , Política Ambiental/tendências , Humanos , Estados Unidos , Incêndios Florestais/economia
3.
Proc Natl Acad Sci U S A ; 115(13): 3314-3319, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531054

RESUMO

The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of recent wildfires (1990-2015), there were 286,000 houses in 2010, compared with 177,000 in 1990. Furthermore, WUI growth often results in more wildfire ignitions, putting more lives and houses at risk. Wildfire problems will not abate if recent housing growth trends continue.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Habitação , Urbanização , Incêndios Florestais/estatística & dados numéricos , Humanos , Fatores de Risco , Estados Unidos
4.
J Environ Manage ; 215: 153-165, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29571096

RESUMO

Public lands are typically established in recognition of their unique ecological value, yet both ecological and social values of public lands change over time, along with human distribution and land use. These transformations are evident even in developed countries with long histories of public land management, such as the United States. The 20th Century saw dramatic changes in the American population, in distribution and in racial and ethnic diversity, leading to new challenges and new roles for public lands. Our goal with this paper is to review changing demographics and implications for terrestrial protected areas in the U.S. We overview the fundamentals of population change and data, review past trends in population change and housing growth and their impacts on public lands, and then analyze the most recent decade of demographic change (2000-2010) relative to public lands. Discussions of demographic change and public lands commonly focus on the rural West, but we show that the South is also experiencing substantial change in rural areas with public lands, including Hispanic population growth. We identify those places, rural and urban, where demographic change (2000-2010), including diversification and housing growth, coincide with public lands. Understanding the current trends and long-term demographic context for recent changes in populations can help land managers and conservation scientists mitigate the effects of residential development near public lands, serve a more diverse population, and anticipate future population changes.


Assuntos
Conservação dos Recursos Naturais , Habitação , Crescimento Demográfico , Ecologia , Humanos , Dinâmica Populacional , População Rural , Estados Unidos
5.
Ecol Appl ; 26(7): 2323-2338, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755741

RESUMO

Wildfire is globally an important ecological disturbance affecting biochemical cycles and vegetation composition, but also puts people and their homes at risk. Suppressing wildfires has detrimental ecological effects and can promote larger and more intense wildfires when fuels accumulate, which increases the threat to buildings in the wildland-urban interface (WUI). Yet, when wildfires occur, typically only a small proportion of the buildings within the fire perimeter are lost, and the question is what determines which buildings burn. Our goal was to examine which factors are related to building loss when a wildfire occurs throughout the United States. We were particularly interested in the relative roles of vegetation, topography, and the spatial arrangement of buildings, and how their respective roles vary among ecoregions. We analyzed all fires that occurred within the conterminous United States from 2000 to 2010 and digitized which buildings were lost and which survived according to Google Earth historical imagery. We modeled the occurrence as well as the percentage of buildings lost within clusters using logistic and linear regression. Overall, variables related to topography and the spatial arrangement of buildings were more frequently present in the best 20 regression models than vegetation-related variables. In other words, specific locations in the landscape have a higher fire risk, and certain development patterns can exacerbate that risk. Fire policies and prevention efforts focused on vegetation management are important, but insufficient to solve current wildfire problems. Furthermore, the factors associated with building loss varied considerably among ecoregions suggesting that fire policy applied uniformly across the United States will not work equally well in all regions and that efforts to adapt communities to wildfires must be regionally tailored.


Assuntos
Conservação dos Recursos Naturais , Incêndios Florestais/estatística & dados numéricos , Humanos , Estados Unidos
6.
Conserv Biol ; 28(5): 1291-301, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24811862

RESUMO

As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale-dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated whether there is also a systematic temporal trend in the relationship between bird biodiversity and housing development. We used linear regression to examine associations between forest bird species richness and housing growth in the conterminous United States over 30 years. Our data sources were the North American Breeding Bird Survey and the 2000 decennial U.S. Census. In the 9 largest forested ecoregions, housing density increased continually over time. Across the conterminous United States, the association between bird species richness and housing density was positive for virtually all guilds except ground nesting birds. We found a systematic trajectory of declining bird species richness as housing increased through time. In more recently developed ecoregions, where housing density was still low, the association with bird species richness was neutral or positive. In ecoregions that were developed earlier and where housing density was highest, the association of housing density with bird species richness for most guilds was negative and grew stronger with advancing decades. We propose that in general the relationship between human settlement and biodiversity over time unfolds as a 2-phase process. The first phase is apparently innocuous; associations are positive due to coincidence of low-density housing with high biodiversity. The second phase is highly detrimental to biodiversity, and increases in housing density are associated with biodiversity losses. The long-term effect on biodiversity depends on the final housing density. This general pattern can help unify our understanding of the relationship of human encroachment and biodiversity response.


Assuntos
Biodiversidade , Aves/fisiologia , Florestas , Animais , Humanos , Dinâmica Populacional , Fatores de Tempo , Estados Unidos
7.
J Environ Manage ; 128: 540-7, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23831676

RESUMO

The wildland urban interface (WUI) delineates the areas where wildland fire hazard most directly impacts human communities and threatens lives and property, and where houses exert the strongest influence on the natural environment. Housing data are a major problem for WUI mapping. When housing data are zonal, the concept of a WUI neighborhood can be captured easily in a density measure, but variations in zone (census block) size and shape introduce bias. Other housing data are points, so zonal issues are avoided, but the neighborhood character of the WUI is lost if houses are evaluated individually. Our goal was to develop a consistent method to map the WUI that is able to determine where neighborhoods (or clusters of houses) exist, using just housing location and wildland fuel data. We used structure and vegetation maps and a moving window analysis, with various window sizes representing neighborhood sizes, to calculate the neighborhood density of both houses and wildland vegetation. Mapping four distinct areas (in WI, MI, CA and CO) the method resulted in amounts of WUI comparable to those of zonal mapping, but with greater precision. We conclude that this hybrid method is a useful alternative to zonal mapping from the neighborhood to the landscape scale, and results in maps that are better suited to operational fire management (e.g., fuels reduction) needs, while maintaining consistency with conceptual and U.S. policy-specific WUI definitions.


Assuntos
Mapas como Assunto , Urbanização , Algoritmos , California , Colorado , Conservação dos Recursos Naturais/métodos , Ecossistema , Incêndios , Habitação , Michigan , Wisconsin
8.
Ecol Appl ; 23(3): 565-82, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23734486

RESUMO

National-scale analyses of fire occurrence are needed to prioritize fire policy and management activities across the United States. However, the drivers of national-scale patterns of fire occurrence are not well understood, and how the relative importance of human or biophysical factors varies across the country is unclear. Our research goal was to model the drivers of fire occurrence within ecoregions across the conterminous United States. We used generalized linear models to compare the relative influence of human, vegetation, climate, and topographic variables on fire occurrence in the United States, as measured by MODIS active fire detections collected between 2000 and 2006. We constructed models for all fires and for large fires only and generated predictive maps to quantify fire occurrence probabilities. Areas with high fire occurrence probabilities were widespread in the Southeast, and localized in the Mountain West, particularly in southern California, Arizona, and New Mexico. Probabilities for large-fire occurrence were generally lower, but hot spots existed in the western and south-central United States The probability of fire occurrence is a critical component of fire risk assessments, in addition to vegetation type, fire behavior, and the values at risk. Many of the hot spots we identified have extensive development in the wildland--urban interface and are near large metropolitan areas. Our results demonstrated that human variables were important predictors of both all fires and large fires and frequently exhibited nonlinear relationships. However, vegetation, climate, and topography were also significant variables in most ecoregions. If recent housing growth trends and fire occurrence patterns continue, these areas will continue to challenge policies and management efforts seeking to balance the risks generated by wildfires with the ecological benefits of fire.


Assuntos
Ecossistema , Incêndios , Atividades Humanas , Modelos Estatísticos , Demografia , Humanos , Fatores de Risco , Fatores de Tempo , Estados Unidos
9.
Ecol Appl ; 20(7): 1913-25, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21049879

RESUMO

Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating dispersal of propagules along roads. To evaluate relationships between housing and the distribution of invasive exotic plants, we asked (1) how strongly is housing associated with the spatial distribution of invasive exotic plants compared to other anthropogenic and environmental factors; (2) what type of housing pattern is related to the richness of invasive exotic plants; and (3) do invasive plants represent ecological traits associated with specific housing patterns? Using two types of regression analysis (best subset analysis and hierarchical partitioning analysis), we found that invasive exotic plant richness was equally or more strongly related to housing variables than to other human (e.g., mean income and roads) and environmental (e.g., topography and forest cover) variables at the county level across New England. Richness of invasive exotic plants was positively related to area of wildland-urban interface (WUI), low-density residential areas, change in number of housing units between 1940 and 2000, mean income, plant productivity (NDVI), and altitudinal range and rainfall; it was negatively related to forest area and connectivity. Plant life history traits were not strongly related to housing patterns. We expect the number of invasive exotic plants to increase as a result of future housing growth and suggest that housing development be considered a primary factor in plans to manage and monitor invasive exotic plant species.


Assuntos
Ecossistema , Espécies Introduzidas , Plantas/classificação , Demografia , Habitação , Atividades Humanas , New England
10.
PLoS One ; 5(8): e11938, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20689854

RESUMO

BACKGROUND: Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance. METHODOLOGY/PRINCIPAL FINDINGS: We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period) and modest losses in abundance (-28.7 - -10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States. CONCLUSIONS/SIGNIFICANCE: Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., approximately 22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United States may already fall below the habitat amount threshold where fragmentation effects become important predictors of forest bird community structure.


Assuntos
Aves , Conservação dos Recursos Naturais/métodos , Árvores , Animais , Biodiversidade , Bases de Dados Factuais
11.
Proc Natl Acad Sci U S A ; 107(2): 940-5, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080780

RESUMO

Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern "Noah's Ark." Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Habitação/estatística & dados numéricos , Idoso , Condução de Veículo/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Agricultura Florestal/tendências , Habitação/tendências , Humanos , Aposentadoria/estatística & dados numéricos , Estados Unidos , Meio Selvagem
12.
J Environ Manage ; 90(8): 2690-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19329243

RESUMO

Rural, forested areas throughout the United States are experiencing strong housing growth with potentially detrimental impacts on the environment. In this paper, we quantify housing growth in Northern Wisconsin over the last sixty years to determine if growth rates were higher near public lands, which may represent an important recreational amenity. We used data from the U.S. Census to produce decadal housing density estimates, "backcasts," from 1940 to 2000 for northern Wisconsin to examine "rural sprawl" in northern Wisconsin and its relationship to forested areas and public lands. We integrated housing density estimates with the 1992/1993 National Land Cover Dataset to examine the relationship between rural sprawl and land cover, especially forests. Between 1940 and 2000, private land with <2 housing units/km(2) decreased from 47% to 21% of the total landscape. Most importantly, housing growth was concentrated along the boundaries of public lands. In 14 of the 19 counties that we studied, housing growth rates within 1 km of a public land boundary exceeded growth rates in the remainder of the county, and three of the five counties that did not exhibit this pattern, were the ones with the least amount of public land. Future growth can be expected in areas with abundant natural amenities, highlighting the critical need for additional research and effective natural resource management and regional planning to address these challenges.


Assuntos
Monitoramento Ambiental/métodos , Habitação , Árvores , Ecossistema , Estados Unidos , Wisconsin
13.
Conserv Biol ; 23(3): 758-69, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22748094

RESUMO

Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial analysis of relationships between people and fire may help identify areas where increases in fire frequency will threaten ecologically valuable areas.


Assuntos
Clima , Conservação dos Recursos Naturais/métodos , Ecossistema , Incêndios/estatística & dados numéricos , Chile , Geografia , Atividades Humanas , Humanos , Região do Mediterrâneo , América do Norte , Densidade Demográfica , África do Sul , Austrália Ocidental
14.
Ecol Appl ; 17(7): 2011-23, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17974338

RESUMO

Rural America is witnessing widespread housing development, which is to the detriment of the environment. It has been suggested to cluster houses so that their disturbance zones overlap and thus cause less habitat loss than is the case for dispersed development. Clustering houses makes intuitive sense, but few empirical studies have quantified the spatial pattern of houses in real landscapes, assessed changes in their patterns over time, and quantified the resulting habitat loss. We addressed three basic questions: (1) What are the spatial patterns of houses and how do they change over time; (2) How much habitat is lost due to houses, and how is this affected by spatial pattern of houses; and (3) What type of habitat is most affected by housing development. We mapped 27 419 houses from aerial photos for five time periods in 17 townships in northern Wisconsin and calculated the terrestrial land area remaining after buffering each house using 100- and 500-m disturbance zones. The number of houses increased by 353% between 1937 and 1999. Ripley's K test showed that houses were significantly clustered at all time periods and at all scales. Due to the clustering, the rate at which habitat was lost (176% and 55% for 100- and 500-m buffers, respectively) was substantially lower than housing growth rates, and most land area was undisturbed (95% and 61% for 100-m and 500-m buffers, respectively). Houses were strongly clustered within 100 m of lakes. Habitat loss was lowest in wetlands but reached up to 60% in deciduous forests. Our results are encouraging in that clustered development is common in northern Wisconsin, and habitat loss is thus limited. However, the concentration of development along lakeshores causes concern, because these may be critical habitats for many species. Conservation goals can only be met if policies promote clustered development and simultaneously steer development away from sensitive ecosystems.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Habitação , Água Doce , Humanos , Wisconsin
15.
Ecol Appl ; 17(5): 1388-402, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17708216

RESUMO

Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the spatial arrangement of ignitions and fuels on the landscape, in addition to nonlinear relationships, will be important to fire managers and conservation planners because fire risk may be related to specific levels of housing density that can be accounted for in land use planning. With more fires occurring in close proximity to human infrastructure, there may also be devastating ecological impacts if development continues to grow farther into wildland vegetation.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Ecossistema , Incêndios/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , California , Incêndios/prevenção & controle , Previsões , Geografia , Humanos , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...