Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Am J Audiol ; 32(3S): 746-760, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37319406

RESUMO

PURPOSE: Acquired vestibulotoxicity from hospital-prescribed medications such as aminoglycoside antibiotics affects as many as 40,000 people each year in North America. However, there are no current federally approved drugs to prevent or treat the debilitating and permanent loss of vestibular function caused by bactericidal aminoglycoside antibiotics. This review will cover our current understanding of the impact of, and mechanisms underlying, aminoglycoside-induced vestibulotoxicity and highlight the gaps in our knowledge that remain. CONCLUSIONS: Aminoglycoside-induced vestibular deficits have long-term impacts on patients across the lifespan. Additionally, the prevalence of aminoglycoside-induced vestibulotoxicity appears to be greater than cochleotoxicity. Thus, monitoring for vestibulotoxicity should be independent of auditory monitoring and encompass patients of all ages from young children to older adults before, during, and after aminoglycoside therapy.


Assuntos
Aminoglicosídeos , Vestíbulo do Labirinto , Criança , Humanos , Pré-Escolar , Idoso , Aminoglicosídeos/efeitos adversos , Antibacterianos/efeitos adversos
2.
Hear Res ; 434: 108786, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37192594

RESUMO

Loss of sensory hair cells from exposure to certain licit drugs, such as aminoglycoside antibiotics, can result in permanent hearing damage. Exogenous application of the neurotrophic molecule hepatocyte growth factor (HGF) promotes neuronal cell survival in a variety of contexts, including protecting hair cells from aminoglycoside ototoxicity. HGF itself is not an ideal therapeutic due to a short half-life and limited blood-brain barrier permeability. MM-201 is a chemically stable, blood-brain barrier permeable, synthetic HGF mimetic that serves as a functional ligand to activate the HGF receptor and its downstream signaling cascade. We previously demonstrated that MM-201 robustly protects zebrafish lateral line hair cells from aminoglycoside ototoxicity. Here, we examined the ability of MM-201 to protect mammalian sensory hair cells from aminoglycoside damage to further evaluate MM-201's clinical potential. We found that MM-201 exhibited dose-dependent protection from neomycin and gentamicin ototoxicity in mature mouse utricular explants. MM-201's protection was reduced following inhibition of mTOR, a downstream target of HGF receptor activation, implicating the activation of endogenous intracellular substrates by MM-201 as critical for the observed protection. We then asked if MM-201 altered the bactericidal properties of aminoglycosides. Using either plate or liquid growth assays we found that MM-201 did not alter the bactericidal efficacy of aminoglycoside antibiotics at therapeutically relevant concentrations. We therefore assessed the protective capacity of MM-201 in an in vivo mouse model of kanamycin ototoxicity. In contrast to our in vitro data, MM-201 did not attenuate kanamycin ototoxicity in vivo. Further, we found that MM-201 was ototoxic to mice across the dose range tested here. These data suggest species- and tissue-specific differences in otoprotective capacity. Next generation HGF mimetics are in clinical trials for neurodegenerative diseases and show excellent safety profiles, but neither preclinical studies nor clinical trials have examined hearing loss as a potential consequence of pharmaceutical HGF activation. Further research is needed to determine the consequences of systemic MM-201 application on the auditory system.


Assuntos
Aminoglicosídeos , Ototoxicidade , Camundongos , Animais , Aminoglicosídeos/toxicidade , Proteínas Proto-Oncogênicas c-met/farmacologia , Peixe-Zebra , Fator de Crescimento de Hepatócito/farmacologia , Antibacterianos/toxicidade , Morte Celular , Canamicina/toxicidade , Mamíferos
3.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145336

RESUMO

Hearing loss negatively impacts the well-being of millions of people worldwide. Systemic delivery of ototherapeutics has limited efficacy due to severe systemic side effects and the presence of the blood-labyrinth barrier that selectively limits or enables transfer of molecules between plasma and inner ear tissues and fluids. Local drug delivery into the middle and inner ear would be preferable for many newly emerging classes of drugs. Although the cochlea is a challenging target for drug delivery, recent technologies could provide a safe and efficacious delivery of ototherapeutics. Local drug delivery routes include topical delivery via the external auditory meatus, retroauricular, transtympanic, and intracochlear delivery. Many new drug delivery systems specifically for the inner ear are under development or undergoing clinical studies. Future studies into these systems may provide a means for extended delivery of drugs to preserve or restore hearing in patients with hearing disorders. This review outlines the anatomy of the (inner) ear, describes the various local delivery systems and routes, and various quantification methodologies to determine the pharmacokinetics of the drugs in the inner ear.

4.
Clin Pharmacol Ther ; 111(2): 366-372, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34032273

RESUMO

Aminoglycosides are widely used antibiotics with notable side effects, such as nephrotoxicity, vestibulotoxicity, and sensorineural hearing loss (cochleotoxicity). MT-RNR1 is a gene that encodes the 12s rRNA subunit and is the mitochondrial homologue of the prokaryotic 16s rRNA. Some MT-RNR1 variants (i.e., m.1095T>C; m.1494C>T; m.1555A>G) more closely resemble the bacterial 16s rRNA subunit and result in increased risk of aminoglycoside-induced hearing loss. Use of aminoglycosides should be avoided in individuals with an MT-RNR1 variant associated with an increased risk of aminoglycoside-induced hearing loss unless the high risk of permanent hearing loss is outweighed by the severity of infection and safe or effective alternative therapies are not available. We summarize evidence from the literature supporting this association and provide therapeutic recommendations for the use of aminoglycosides based on MT-RNR1 genotype (updates at https://cpicpgx.org/guidelines/ and www.pharmgkb.org).


Assuntos
Aminoglicosídeos/efeitos adversos , Antibacterianos/efeitos adversos , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/genética , Variantes Farmacogenômicos , RNA Ribossômico/genética , Tomada de Decisão Clínica , Genótipo , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Ototoxicidade , Segurança do Paciente , Farmacogenética , Testes Farmacogenômicos , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco
5.
Otolaryngol Clin North Am ; 54(6): 1101-1115, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34774227

RESUMO

Ototoxicity refers to damage to the inner ear that leads to functional hearing loss or vestibular disorders by selected pharmacotherapeutics as well as a variety of environmental exposures (eg, lead, cadmium, solvents). This article reviews the fundamental mechanisms underlying ototoxicity by clinically relevant, hospital-prescribed medications (ie, aminoglycoside antibiotics or cisplatin, as illustrative examples). Also reviewed are current strategies to prevent prescribed medication-induced ototoxicity, with several clinical or candidate interventional strategies being discussed.


Assuntos
Orelha Interna , Ototoxicidade , Aminoglicosídeos/efeitos adversos , Antibacterianos/efeitos adversos , Cisplatino/efeitos adversos , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-34790885

RESUMO

Disability is an important and often overlooked component of diversity. Individuals with disabilities bring a rare perspective to science, technology, engineering, mathematics, and medicine (STEMM) because of their unique experiences approaching complex issues related to health and disability, navigating the healthcare system, creatively solving problems unfamiliar to many individuals without disabilities, managing time and resources that are limited by physical or mental constraints, and advocating for themselves and others in the disabled community. Yet, individuals with disabilities are underrepresented in STEMM. Professional organizations can address this underrepresentation by recruiting individuals with disabilities for leadership opportunities, easing financial burdens, providing equal access, fostering peer-mentor groups, and establishing a culture of equity and inclusion spanning all facets of diversity. We are a group of deaf and hard-of-hearing (D/HH) engineers, scientists, and clinicians, most of whom are active in clinical practice and/or auditory research. We have worked within our professional societies to improve access and inclusion for D/HH individuals and others with disabilities. We describe how different models of disability inform our understanding of disability as a form of diversity. We address heterogeneity within disabled communities, including intersectionality between disability and other forms of diversity. We highlight how the Association for Research in Otolaryngology has supported our efforts to reduce ableism and promote access and inclusion for D/HH individuals. We also discuss future directions and challenges. The tools and approaches discussed here can be applied by other professional organizations to include individuals with all forms of diversity in STEMM.

7.
Front Neurol ; 12: 725566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489859

RESUMO

Over 100 drugs and chemicals are associated with permanent hearing loss, tinnitus, and vestibular deficits, collectively known as ototoxicity. The ototoxic potential of drugs is rarely assessed in pre-clinical drug development or during clinical trials, so this debilitating side-effect is often discovered as patients begin to report hearing loss. Furthermore, drug-induced ototoxicity in adults, and particularly in elderly patients, may go unrecognized due to hearing loss from a variety of etiologies because of a lack of baseline assessments immediately prior to novel therapeutic treatment. During the current pandemic, there is an intense effort to identify new drugs or repurpose FDA-approved drugs to treat COVID-19. Several potential COVID-19 therapeutics are known ototoxins, including chloroquine (CQ) and lopinavir-ritonavir, demonstrating the necessity to identify ototoxic potential in existing and novel medicines. Furthermore, several factors are emerging as potentiators of ototoxicity, such as inflammation (a hallmark of COVID-19), genetic polymorphisms, and ototoxic synergy with co-therapeutics, increasing the necessity to evaluate a drug's potential to induce ototoxicity under varying conditions. Here, we review the potential of COVID-19 therapies to induce ototoxicity and factors that may compound their ototoxic effects. We then discuss two models for rapidly detecting the potential for ototoxicity: mammalian auditory cell lines and the larval zebrafish lateral line. These models offer considerable value for pre-clinical drug development, including development of COVID-19 therapies. Finally, we show the validity of in silico screening for ototoxic potential using a computational model that compares structural similarity of compounds of interest with a database of known ototoxins and non-ototoxins. Preclinical screening at in silico, in vitro, and in vivo levels can provide an earlier indication of the potential for ototoxicity and identify the subset of candidate therapeutics for treating COVID-19 that need to be monitored for ototoxicity as for other widely-used clinical therapeutics, like aminoglycosides and cisplatin.

8.
Am J Audiol ; 30(3S): 800-809, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34549989

RESUMO

Purpose Specific classes of antibiotics, such as aminoglycosides, have well-established adverse events producing permanent hearing loss, tinnitus, and balance and/or vestibular problems (i.e., ototoxicity). Although these antibiotics are frequently used to treat pseudomonas and other bacterial infections in patients with cystic fibrosis (CF), there are no formalized recommendations describing approaches to implementation of guideline adherent ototoxicity monitoring as part of CF clinical care. Method This consensus statement was developed by the International Ototoxicity Management Working Group (IOMG) Ad Hoc Committee on Aminoglycoside Antibiotics to address the clinical need for ototoxicity management in CF patients treated with known ototoxic medications. These clinical protocol considerations were created using consensus opinion from a community of international experts and available evidence specific to patients with CF, as well as published national and international guidelines on ototoxicity monitoring. Results The IOMG advocates four clinical recommendations for implementing routine and guideline adherent ototoxicity management in patients with CF. These are (a) including questions about hearing, tinnitus, and balance/vestibular problems as part of the routine CF case history for all patients; (b) utilizing timely point-of-care measures; (c) establishing a baseline and conducting posttreatment evaluations for each course of intravenous ototoxic drug treatment; and (d) repeating annual hearing and vestibular evaluations for all patients with a history of ototoxic antibiotic exposure. Conclusion Increased efforts for implementation of an ototoxicity management program in the CF care team model will improve identification of ototoxicity signs and symptoms, allow for timely therapeutic follow-up, and provide the clinician and patient an opportunity to make an informed decision about potential treatment modifications to minimize adverse events. Supplemental Material https://doi.org/10.23641/asha.16624366.


Assuntos
Fibrose Cística , Aminoglicosídeos/efeitos adversos , Antibacterianos/efeitos adversos , Fibrose Cística/complicações , Fibrose Cística/diagnóstico , Fibrose Cística/tratamento farmacológico , Audição , Testes Auditivos , Humanos
9.
Front Neurosci ; 15: 695268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381329

RESUMO

Cisplatin-induced ototoxicity in humans is more predominant in the cochlea than in the vestibule. Neither definite nor substantial vestibular dysfunction after cisplatin treatment has been consistently reported in the current literature. Inner ear hair cells seem to have intrinsic characteristics that make them susceptible to direct exposure to cisplatin. The existing literature suggests, however, that cisplatin might have different patterns of drug trafficking across the blood-labyrinth-barrier, or different degrees of cisplatin uptake to the hair cells in the cochlear and vestibular compartments. This review proposes an explanation for the preferential cochleotoxicity of cisplatin based on current evidence as well as the anatomy and physiology of the inner ear. The endocochlear potential, generated by the stria vascularis, acting as the driving force for hair cell mechanoelectrical transduction might also augment cisplatin entry into cochlear hair cells. Better understanding of the stria vascularis might shed new light on cochleotoxic mechanisms and inform the development of otoprotective interventions to moderate cisplatin associated ototoxicity.

10.
Hear Res ; 409: 108327, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388681

RESUMO

CACHD1 recently was shown to be an α2δ-like subunit that can modulate the activity of some types of voltage-gated calcium channels, including the low-voltage activated, T-type CaV3 channels. CACHD1 is widely expressed in the central nervous system but its biological functions and relationship to disease states are unknown. Here, we report that mice with deleterious Cachd1 mutations are hearing impaired and have balance defects, demonstrating that CACHD1 is functionally important in the peripheral auditory and vestibular organs of the inner ear. The vestibular dysfunction of Cachd1 mutant mice, exhibited by leaning and head tilting behaviors, is related to a deficiency of calcium carbonate crystals (otoconia) in the saccule and utricle. The auditory dysfunction, shown by ABR threshold elevations and reduced DPOAEs, is associated with reduced endocochlear potentials and increased endolymph calcium concentrations. Paint-fills of mutant inner ears from prenatal and newborn mice revealed dilation of the membranous labyrinth caused by an enlarged volume of endolymph. These pathologies all can be related to a disturbance of calcium homeostasis in the endolymph of the inner ear, presumably caused by the loss of CACHD1 regulatory effects on voltage-gated calcium channel activity. Cachd1 expression in the cochlea appears stronger in late embryonic stages than in adults, suggesting an early role in establishing endolymph calcium concentrations. Our findings provide new insights into CACHD1 function and suggest the involvement of voltage-gated calcium channels in endolymph homeostasis, essential for normal auditory and vestibular function.


Assuntos
Audição , Homeostase , Animais , Animais Recém-Nascidos , Cálcio , Canais de Cálcio , Feminino , Camundongos , Gravidez , Vestíbulo do Labirinto
11.
Am J Audiol ; 30(3S): 887-900, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34415784

RESUMO

Purpose This review article summarizes our current understanding of the mechanisms underlying acquired hearing loss from hospital-prescribed medications that affects as many as 1 million people each year in Western Europe and North America. Yet, there are currently no federally approved drugs to prevent or treat the debilitating and permanent hearing loss caused by the life-saving platinum-based anticancer drugs or the bactericidal aminoglycoside antibiotics. Hearing loss has long-term impacts on quality-of-life measures, especially in young children and older adults. This review article also highlights some of the current knowledge gaps regarding iatrogenic causes of hearing loss. Conclusion Further research is urgently needed to further refine clinical practice and better ameliorate iatrogenic drug-induced hearing loss.


Assuntos
Antineoplásicos , Ototoxicidade , Idoso , Aminoglicosídeos/efeitos adversos , Antibacterianos/efeitos adversos , Antineoplásicos/efeitos adversos , Criança , Pré-Escolar , Cisplatino/efeitos adversos , Humanos
12.
J Neuroinflammation ; 18(1): 16, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407594

RESUMO

BACKGROUND: Microglia are resident immunocompetent and phagocytic cells in the CNS. Pro-inflammatory microglia, stimulated by microbial signals such as bacterial lipopolysaccharide (LPS), viral RNAs, or inflammatory cytokines, are neurotoxic and associated with pathogenesis of several neurodegenerative diseases. Long non-coding RNAs (lncRNA) are emerging as important tissue-specific regulatory molecules directing cell differentiation and functional states and may help direct proinflammatory responses of microglia. Characterization of lncRNAs upregulated in proinflammatory microglia, such as NR_126553 or 2500002B13Rik, now termed Nostrill (iNOS Transcriptional Regulatory Intergenic LncRNA Locus) increases our understanding of molecular mechanisms in CNS innate immunity. METHODS: Microglial gene expression array analyses and qRT-PCR were used to identify a novel long intergenic non-coding RNA, Nostrill, upregulated in LPS-stimulated microglial cell lines, LPS-stimulated primary microglia, and LPS-injected mouse cortical tissue. Silencing and overexpression studies, RNA immunoprecipitation, chromatin immunoprecipitation, chromatin isolation by RNA purification assays, and qRT-PCR were used to study the function of this long non-coding RNA in microglia. In vitro assays were used to examine the effects of silencing the novel long non-coding RNA in LPS-stimulated microglia on neurotoxicity. RESULTS: We report here characterization of intergenic lncRNA, NR_126553, or 2500002B13Rik now termed Nostrill (iNOS Transcriptional Regulatory Intergenic LncRNA Locus). Nostrill is induced by LPS stimulation in BV2 cells, primary murine microglia, and in cortical tissue of LPS-injected mice. Induction of Nostrill is NF-κB dependent and silencing of Nostrill decreased inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in BV2 and primary microglial cells. Overexpression of Nostrill increased iNOS expression and NO production. RNA immunoprecipitation assays demonstrated that Nostrill is physically associated with NF-κB subunit p65 following LPS stimulation. Silencing of Nostrill significantly reduced NF-κB p65 and RNA polymerase II recruitment to the iNOS promoter and decreased H3K4me3 activating histone modifications at iNOS gene loci. In vitro studies demonstrated that silencing of Nostrill in microglia reduced LPS-stimulated microglial neurotoxicity. CONCLUSIONS: Our data indicate a new regulatory role of the NF-κB-induced Nostrill and suggest that Nostrill acts as a co-activator of transcription of iNOS resulting in the production of nitric oxide by microglia through modulation of epigenetic chromatin remodeling. Nostrill may be a target for reducing the neurotoxicity associated with iNOS-mediated inflammatory processes in microglia during neurodegeneration.


Assuntos
Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , RNA Longo não Codificante/biossíntese , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Feminino , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Óxido Nítrico Sintase Tipo II/genética , RNA Longo não Codificante/genética , Transcrição Gênica/efeitos dos fármacos
15.
Sci Adv ; 5(7): eaaw1836, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328162

RESUMO

Aminoglycoside antibiotics are essential for treating life-threatening bacterial infections, despite the risk of lifelong hearing loss. Infections induce inflammation and up-regulate expression of candidate aminoglycoside-permeant cation channels, including transient receptor potential vanilloid-1 (TRPV1). Heterologous expression of TRPV1 facilitated cellular uptake of (fluorescently tagged) gentamicin that was enhanced by agonists, and diminished by antagonists, of TRPV1. Cochlear TRPV1 was immunolocalized near the apical membranes of sensory hair cells, adjacent supporting cells, and marginal cells in the stria vascularis. Exposure to immunostimulatory lipopolysaccharides, to simulate of bacterial infections, increased cochlear expression of TRPV1 and hair cell uptake of gentamicin. Lipopolysaccharide exposure exacerbated aminoglycoside-induced auditory threshold shifts and loss of cochlear hair cells in wild-type, but not in heterozygous Trpv1+/- or Trpv1 knockout, mice. Thus, TRPV1 facilitates cochlear uptake of aminoglycosides, and bacteriogenic stimulation upregulates TRPV1 expression to exacerbate cochleotoxicity. Furthermore, loss-of-function polymorphisms in Trpv1 can protect against immunogenic exacerbation of aminoglycoside-induced cochleotoxicity.


Assuntos
Aminoglicosídeos/efeitos adversos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/etiologia , Inflamação/complicações , Inflamação/genética , Canais de Cátion TRPV/genética , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Gentamicinas/efeitos adversos , Células Ciliadas Auditivas/ultraestrutura , Perda Auditiva/metabolismo , Perda Auditiva/fisiopatologia , Ativação do Canal Iônico , Camundongos , Camundongos Knockout , Receptor 4 Toll-Like/metabolismo
16.
Sci Transl Med ; 11(482)2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842313

RESUMO

Permanent hearing loss affects more than 5% of the world's population, yet there are no nondevice therapies that can protect or restore hearing. Delivery of therapeutics to the cochlea and vestibular system of the inner ear is complicated by their inaccessible location. Drug delivery to the inner ear via the vasculature is an attractive noninvasive strategy, yet the blood-labyrinth barrier at the luminal surface of inner ear capillaries restricts entry of most blood-borne compounds into inner ear tissues. Here, we compare the blood-labyrinth barrier to the blood-brain barrier, discuss invasive intratympanic and intracochlear drug delivery methods, and evaluate noninvasive strategies for drug delivery to the inner ear.


Assuntos
Sistemas de Liberação de Medicamentos , Orelha Interna/patologia , Preparações Farmacêuticas/administração & dosagem , Animais , Cóclea/irrigação sanguínea , Perda Auditiva/patologia , Humanos , Permeabilidade
17.
Artigo em Inglês | MEDLINE | ID: mdl-30559254

RESUMO

Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.


Assuntos
Aminoglicosídeos/efeitos adversos , Antibacterianos/efeitos adversos , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Perda Auditiva/induzido quimicamente , Aminoglicosídeos/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Cóclea/efeitos dos fármacos , Descoberta de Drogas , Perda Auditiva/prevenção & controle , Humanos , Neoplasias/tratamento farmacológico , Substâncias Protetoras/farmacologia
18.
PLoS One ; 13(11): e0206628, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383813

RESUMO

Assessing the cytoplasmic uptake of fluorescently-tagged drugs in heterogeneous cell types currently involves time-consuming manual segmentation of confocal microscopy images. We developed a set of methods that incorporate map algebra techniques to facilitate and expedite image segmentation, particularly of the parenchyma of intermediate cells in the stria vascularis of the inner ear. Map algebra is used to apply a convolution kernel to pixel neighborhoods to create a masking image to select pixels in the original image for further operations. Here, we describe the utility of integrated intensity-based, percentile-based, and local autocorrelation-based methods to automate segmentation of images into putative morphological regions for pixel intensity analysis. Integrated intensity-based methods are variants of watershed segmentation tools that determine morphological boundaries from rates of change in integrated pixel intensity. Percentile- and local autocorrelation-based methods evolved out of the process of developing map algebra- and integrated intensity-based tools. We identified several simplifications that are surprisingly effective for image segmentation and pixel intensity analysis. These methods were empirically validated on three levels: first, the algorithms were developed based on iterations of inspected results; second, algorithms were tested for various types of robustness; and third, developed algorithms were validated against results from manually-segmented images. We conclude the key to automated segmentation is supervision of output data.


Assuntos
Automação Laboratorial/métodos , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Animais , Software
20.
Int J Audiol ; 57(sup4): S41-S48, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28949262

RESUMO

OBJECTIVES: Neonates admitted to the neonatal intensive care unit (NICU) are at greater risk of permanent hearing loss compared to infants in well mother and baby units. Several factors have been associated with this increased prevalence of hearing loss, including congenital infections (e.g. cytomegalovirus or syphilis), ototoxic drugs (such as aminoglycoside or glycopeptide antibiotics), low birth weight, hypoxia and length of stay. The aetiology of this increased prevalence of hearing loss remains poorly understood. DESIGN: Here we review current practice and discuss the feasibility of designing improved ototoxicity screening and monitoring protocols to better identify acquired, drug-induced hearing loss in NICU neonates. STUDY SAMPLE: A review of published literature. CONCLUSIONS: We conclude that current audiological screening or monitoring protocols for neonates are not designed to adequately detect early onset of ototoxicity. This paper offers a detailed review of evidence-based research, and offers recommendations for developing and implementing an ototoxicity monitoring protocol for young infants, before and after discharge from the hospital.


Assuntos
Monitoramento de Medicamentos/métodos , Perda Auditiva/induzido quimicamente , Testes Auditivos , Audição/efeitos dos fármacos , Fatores Etários , Pré-Escolar , Relação Dose-Resposta a Droga , Interações Medicamentosas , Diagnóstico Precoce , Perda Auditiva/diagnóstico , Perda Auditiva/fisiopatologia , Perda Auditiva/terapia , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...