Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(9)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139111

RESUMO

Phospholipid metabolism, including phosphatidylcholine (PC) biosynthesis, is crucial for various biological functions and is associated with longevity. Phosphatidylethanolamine N-methyltransferase (PEMT) is a protein that catalyzes the biosynthesis of PC, the levels of which change in various organs such as the brain and kidneys during aging. However, the role of PEMT for systemic PC supply is not fully understood. To address how PEMT affects aging-associated energy metabolism in tissues responsible for nutrient absorption, lipid storage, and energy consumption, we employed NMR-based metabolomics to study the liver, plasma, intestine (duodenum, jejunum, and ileum), brown/white adipose tissues (BAT and WAT), and skeletal muscle of young (9-10 weeks) and old (91-132 weeks) wild-type (WT) and PEMT knockout (KO) mice. We found that the effect of PEMT-knockout was tissue-specific and age-dependent. A deficiency of PEMT affected the metabolome of all tissues examined, among which the metabolome of BAT from both young and aged KO mice was dramatically changed in comparison to the WT mice, whereas the metabolome of the jejunum was only slightly affected. As for aging, the absence of PEMT increased the divergence of the metabolome during the aging of the liver, WAT, duodenum, and ileum and decreased the impact on skeletal muscle. Overall, our results suggest that PEMT plays a previously underexplored, critical role in both aging and energy metabolism.


Assuntos
Envelhecimento , Fígado , Fosfatidiletanolamina N-Metiltransferase , Animais , Fígado/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilcolinas , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Fosfolipídeos/metabolismo
2.
Biomolecules ; 11(2)2021 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562384

RESUMO

The dysregulation of cellular metabolism is a hallmark of ageing. To understand the metabolic changes that occur as a consequence of the ageing process and to find biomarkers for age-related diseases, we conducted metabolomic analyses of the brain, heart, kidney, liver, lung and spleen in young (9-10 weeks) and old (96-104 weeks) wild-type mice [mixed genetic background of 129/J and C57BL/6] using NMR spectroscopy. We found differences in the metabolic fingerprints of all tissues and distinguished several metabolites to be altered in most tissues, suggesting that they may be universal biomarkers of ageing. In addition, we found distinct tissue-clustered sets of metabolites throughout the organism. The associated metabolic changes may reveal novel therapeutic targets for the treatment of ageing and age-related diseases. Moreover, the identified metabolite biomarkers could provide a sensitive molecular read-out to determine the age of biologic tissues and organs and to validate the effectiveness and potential off-target effects of senolytic drug candidates on both a systemic and tissue-specific level.


Assuntos
Envelhecimento/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Feminino , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Baço/metabolismo
3.
Metabolites ; 12(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35050139

RESUMO

Energy metabolism, including alterations in energy intake and expenditure, is closely related to aging and longevity. Metabolomics studies have recently unraveled changes in metabolite composition in plasma and tissues during aging and have provided critical information to elucidate the molecular basis of the aging process. However, the metabolic changes in tissues responsible for food intake and lipid storage have remained unexplored. In this study, we aimed to investigate aging-related metabolic alterations in these tissues. To fill this gap, we employed NMR-based metabolomics in several tissues, including different parts of the intestine (duodenum, jejunum, ileum) and brown/white adipose tissues (BAT, WAT), of young (9-10 weeks) and old (96-104 weeks) wild-type (mixed genetic background of 129/J and C57BL/6) mice. We, further, included plasma and skeletal muscle of the same mice to verify previous results. Strikingly, we found that duodenum, jejunum, ileum, and WAT do not metabolically age. In contrast, plasma, skeletal muscle, and BAT show a strong metabolic aging phenotype. Overall, we provide first insights into the metabolic changes of tissues essential for nutrient uptake and lipid storage and have identified biomarkers for metabolites that could be further explored, to study the molecular mechanisms of aging.

4.
Cell Rep Methods ; 1(2): 100016, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35475236

RESUMO

Quantitative information about the levels and dynamics of post-translational modifications (PTMs) is critical for an understanding of cellular functions. Protein arginine methylation (ArgMet) is an important subclass of PTMs and is involved in a plethora of (patho)physiological processes. However, because of the lack of methods for global analysis of ArgMet, the link between ArgMet levels, dynamics, and (patho)physiology remains largely unknown. We utilized the high sensitivity and robustness of nuclear magnetic resonance (NMR) spectroscopy to develop a general method for the quantification of global protein ArgMet. Our NMR-based approach enables the detection of protein ArgMet in purified proteins, cells, organoids, and mouse tissues. We demonstrate that the process of ArgMet is a highly prevalent PTM and can be modulated by small-molecule inhibitors and metabolites and changes in cancer and during aging. Thus, our approach enables us to address a wide range of biological questions related to ArgMet in health and disease.


Assuntos
Arginina , Neoplasias , Animais , Camundongos , Metilação , Arginina/metabolismo , Proteínas/metabolismo , Processamento de Proteína Pós-Traducional
5.
Diabetologia ; 59(8): 1743-52, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27153842

RESUMO

AIMS/HYPOTHESIS: Lysosomal acid lipase (LAL) hydrolyses cholesteryl esters and triacylglycerols (TG) within lysosomes to mobilise NEFA and cholesterol. Since LAL-deficient (Lal (-/-) ) mice suffer from progressive loss of adipose tissue and severe accumulation of lipids in hepatic lysosomes, we hypothesised that LAL deficiency triggers alternative energy pathway(s). METHODS: We studied metabolic adaptations in Lal (-/-) mice. RESULTS: Despite loss of adipose tissue, Lal (-/-) mice show enhanced glucose clearance during insulin and glucose tolerance tests and have increased uptake of [(3)H]2-deoxy-D-glucose into skeletal muscle compared with wild-type mice. In agreement, fasted Lal (-/-) mice exhibit reduced glucose and glycogen levels in skeletal muscle. We observed 84% decreased plasma leptin levels and significantly reduced hepatic ATP, glucose, glycogen and glutamine concentrations in fed Lal (-/-) mice. Markedly reduced hepatic acyl-CoA concentrations decrease the expression of peroxisome proliferator-activated receptor α (PPARα) target genes. However, treatment of Lal (-/-) mice with the PPARα agonist fenofibrate further decreased plasma TG (and hepatic glucose and glycogen) concentrations in Lal (-/-) mice. Depletion of hepatic nuclear factor 4α and forkhead box protein a2 in fasted Lal (-/-) mice might be responsible for reduced expression of microsomal TG transfer protein, defective VLDL synthesis and drastically reduced plasma TG levels. CONCLUSIONS/INTERPRETATION: Our findings indicate that neither activation nor inactivation of PPARα per se but rather the availability of hepatic acyl-CoA concentrations regulates VLDL synthesis and subsequent metabolic adaptations in Lal (-/-) mice. We conclude that decreased plasma VLDL production enhances glucose uptake into skeletal muscle to compensate for the lack of energy supply.


Assuntos
VLDL-Colesterol/metabolismo , Resistência à Insulina/fisiologia , Esterol Esterase/metabolismo , Animais , VLDL-Colesterol/genética , Feminino , Glucose/metabolismo , Resistência à Insulina/genética , Lipólise/genética , Lipólise/fisiologia , Fígado/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Esterol Esterase/deficiência , Esterol Esterase/genética , Triglicerídeos/metabolismo
6.
Mol Cell Neurosci ; 74: 34-41, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27013422

RESUMO

Processing of the amyloid precursor protein (APP) and amyloid beta (Aß) has been for decades in the center of Alzheimer's disease (AD) research. Beside many other variables, lipids, especially cholesterol and its derivatives, are discussed to contribute to AD pathogenesis. Several studies show that cholesterol affects APP metabolism. Also the converse mechanism, the direct influence of Aß on cholesterol metabolism, has been described. To further investigate this crosstalk between cholesterol- and APP metabolism, a high-fat feeding study was conducted with animals overexpressing human APPSL and/or human ApoB-100. The impact of diet and genotype on cerebral cholesterol metabolism and content as well as spatial learning and memory was examined. While behavioral performance was not influenced by this high fat diet (HFD), reduction of cortical free cholesterol levels and mRNA expression patterns under normal diet and HFD conditions in human APPSL overexpressing mice argue for an important role of APP in cerebral lipid metabolism. From our results we conclude that increased APP metabolism in ApoBxAPP and APPSL mice induces mechanisms to reduce free cholesterol levels.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Córtex Cerebral/metabolismo , Colesterol/metabolismo , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/metabolismo , Feminino , Genótipo , Homeostase , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL
7.
J Neuroinflammation ; 11: 84, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24886182

RESUMO

BACKGROUND: Beyond cognitive decline, Alzheimer's disease (AD) is characterized by numerous neuropathological changes in the brain. Although animal models generally do not fully reflect the broad spectrum of disease-specific alterations, the APPSL mouse model is well known to display early plaque formation and to exhibit spatial learning and memory deficits. However, important neuropathological features, such as neuroinflammation and lipid peroxidation, and their progression over age, have not yet been described in this AD mouse model. METHODS: Hippocampal and neocortical tissues of APPSL mice at different ages were evaluated. One hemisphere from each mouse was examined for micro- and astrogliosis as well as concomitant plaque load. The other hemisphere was evaluated for lipid peroxidation (quantified by a thiobarbituric acid reactive substances (TBARS) assay), changes in Aß abundance (Aß38, Aß40 and Aß42 analyses), as well as determination of aggregated Aß content (Amorfix A4 assay). Finally, correlation analyses were performed to illustrate the time-dependent correlation between neuroinflammation and Aß load (soluble, insoluble, fibrils), or lipid peroxidation, respectively. RESULTS: As is consistent with previous findings, neuroinflammation starts early and shows strong progression over age in the APPSL mouse model. An analyses of concomitant Aß load and plaque deposition revealed a similar progression, and high correlations between neuroinflammation markers and soluble or insoluble Aß or fibrillar amyloid plaque loads were observed. Lipid peroxidation, as measured by TBARS levels, correlates well with neuroinflammation in the neocortex but not the hippocampus. The hippocampal lipid peroxidation correlated strongly with the increase of LOC positive fiber load, whereas neocortical TBARS levels were unrelated to amyloidosis. CONCLUSIONS: These data illustrate for the first time the progression of major AD related neuropathological features other than plaque load in the APPSL mouse model. Specifically, we demonstrate that microgliosis and astrocytosis are prominent aspects of this AD mouse model. The strong correlation of neuroinflammation with amyloid burden and lipid peroxidation underlines the importance of these pathological factors for the development of AD. The new finding of a different relation of lipid peroxidation in the hippocampus and neocortical regions show that the model might contribute to the understanding of complex pathological mechanisms and their interplay in AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide/genética , Encefalite/etiologia , Hipocampo/patologia , Neocórtex/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/patologia , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
8.
Neurobiol Aging ; 34(10): 2379-88, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23643485

RESUMO

During their lifetime, people are commonly exposed to several vascular risk factors that may affect brain ageing and cognitive function. In the last few years, increasing evidence suggests that pathological plasma lipid profiles contribute to the pathogenesis of late-onset Alzheimer's disease. Importantly, hypercholesterolemia, especially elevated low-density lipoprotein cholesterol values, that is, increased apolipoprotein B-100 (ApoB-100) levels, represents an independent risk factor. In this study, the effects of ApoB-100 overexpression, either alone or in combination with cerebral expression of human amyloid precursor protein (hAPP), on cognitive functions and brain pathology were assessed. Our results show that ApoB-100 overexpression induces memory decline and increases cerebral lipid peroxidation and amyloid beta levels compared to those in wild-type animals. Although double-transgenic ApoBxAPP animals did not develop more distinct behavioral deficits than single-transgenic hAPP littermates, hApoB-100 expression caused additional pathophysiological features, such as high LDL and low HDL-cholesterol levels, increased lipid peroxidation, and pronounced ApoB-100 accumulation in cerebral vessels. Thus, our results indicate that ApoBxAPP mice might better reflect the situation of elderly humans than hAPPsl overexpression alone.


Assuntos
Apolipoproteína B-100/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Cognição , Expressão Gênica , Camundongos Transgênicos , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/etiologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Selvagens , Apolipoproteína B-100/genética , Encéfalo/fisiopatologia , HDL-Colesterol/deficiência , LDL-Colesterol/metabolismo , Feminino , Humanos , Hipercolesterolemia , Peroxidação de Lipídeos , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Risco
9.
Biochim Biophys Acta ; 1811(12): 1030-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21875690

RESUMO

In the yeast Saccharomyces cerevisiae triacylglycerols (TAG) are synthesized by the acyl-CoA dependent acyltransferases Dga1p, Are1p, Are2p and the acyl-CoA independent phospholipid:diacylglycerol acyltransferase (PDAT) Lro1p which uses phosphatidylethanolamine (PE) as a preferred acyl donor. In the present study we investigated a possible link between TAG and PE metabolism by analyzing the contribution of the four different PE biosynthetic pathways to TAG formation, namely de novo PE synthesis via Psd1p and Psd2p, the CDP-ethanolamine (CDP-Etn) pathway and lyso-PE acylation by Ale1p. In cells grown on the non-fermentable carbon source lactate supplemented with 5mM ethanolamine (Etn) the CDP-Etn pathway contributed most to the cellular TAG level, whereas mutations in the other pathways displayed only minor effects. In cki1∆dpl1∆eki1∆ mutants bearing defects in the CDP-Etn pathway both the cellular and the microsomal levels of PE were markedly decreased, whereas in other mutants of PE biosynthetic routes depletion of this aminoglycerophospholipid was less pronounced in microsomes. This observation is important because Lro1p similar to the enzymes of the CDP-Etn pathway is a component of the ER. We conclude from these results that in cki1∆dpl1∆eki1∆ insufficient supply of PE to the PDAT Lro1p was a major reason for the strongly reduced TAG level. Moreover, we found that Lro1p activity was markedly decreased in cki1∆dpl1∆eki1∆, although transcription of LRO1 was not affected. Our findings imply that (i) TAG and PE syntheses in the yeast are tightly linked; and (ii) TAG formation by the PDAT Lro1p strongly depends on PE synthesis through the CDP-Etn pathway. Moreover, it is very likely that local availability of PE in microsomes is crucial for TAG synthesis through the Lro1p reaction.


Assuntos
Redes e Vias Metabólicas/genética , Microssomos/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Triglicerídeos/metabolismo , Diglicerídeos/metabolismo , Etanolamina/metabolismo , Etanolamina/farmacologia , Deleção de Genes , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Microssomos/efeitos dos fármacos , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 286(19): 17338-50, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454708

RESUMO

Triacylglycerols are stored in eukaryotic cells within lipid droplets (LD). The LD core is enwrapped by a phospholipid monolayer with phosphatidylcholine (PC), the major phospholipid, and phosphatidylethanolamine (PE), a minor component. We demonstrate that the onset of LD formation is characterized by a change in cellular PC, PE, and phosphatidylserine (PS). With induction of differentiation of 3T3-L1 fibroblasts into adipocytes, the cellular PC/PE ratio decreased concomitant with LD formation, with the most pronounced decline between confluency and day 5. The mRNA for PS synthase-1 (forms PS from PC) and PS decarboxylase (forms PE from PS) increased after day 5. Activity and protein of PE N-methyltransferase (PEMT), which produces PC by methylation of PE, are absent in 3T3-L1 fibroblasts but were induced at day 5. High fat challenge induced PEMT expression in mouse adipose tissue. PE, produced via PS decarboxylase, was the preferred substrate for methylation to PC. A PEMT-GFP fusion protein decorated the periphery of LD. PEMT knockdown in 3T3-L1 adipocytes correlated with increased basal triacylglycerol hydrolysis. Pemt(-/-) mice developed desensitization against adenosine-mediated inhibition of basal hydrolysis in adipose tissue, and adipocyte hypotrophy was observed in Pemt(-/-) animals on a high fat diet. Knock-out of PEMT in adipose tissue down-regulated PS synthase-1 mRNA, suggesting coordination between PE supply and converting pathways during LD biosynthesis. We conclude that two consecutive processes not previously related to LD biogenesis, (i) PE production via PS and (ii) PE conversion via PEMT, are implicated in LD formation and stability.


Assuntos
Lipídeos/química , Metilação , Fosfatidiletanolaminas/química , Células 3T3 , Adipócitos/citologia , Tecido Adiposo/metabolismo , Animais , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Hidrólise , Masculino , Camundongos , Camundongos Transgênicos , Fosfatidilcolinas/química , Fosfatidilserinas/química
11.
J Biol Chem ; 285(35): 26832-26841, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20571028

RESUMO

In the yeast Saccharomyces cerevisiae, neutral lipids can be synthesized by four acyltransferases, namely Dga1p and Lro1p producing triacylglycerols (TAG) and Are1p and Are2p forming steryl esters (SE). TAG and SE are stored in an organelle called lipid particles/droplet. Growth of yeast cells on oleate-supplemented media strongly induced proliferation of lipid particles and specifically the synthesis of TAG, which serve as the major pool for the excess of fatty acids. Surprisingly, SE synthesis was strongly inhibited under these conditions. Here, we show that this effect was not due to decreased expression of ARE2 encoding the major yeast SE synthase at the transcriptional level but to competitive enzymatic inhibition of Are2p by free oleate. Consequently, a triple mutant dga1Deltalro1Deltaare1DeltaARE2(+) grown on oleate did not form substantial amounts of SE and exhibited a growth phenotype similar to the dga1Deltalro1Deltaare1Deltaare2Delta quadruple mutant, including lack of lipid particles. Growth of these mutants on oleate was strongly delayed, and cell viability was decreased but rescued by adaptation. In these strains, oleate stress caused morphological changes of intracellular membranes, altered phospholipid composition and formation of an additional lipid class, ethyl esters of fatty acids. In summary, our data showed that exposure to oleate led to disturbed lipid and membrane homeostasis along with liposensitivity of the yeast.


Assuntos
Ésteres do Colesterol/biossíntese , Farmacorresistência Fúngica/efeitos dos fármacos , Ácido Oleico/farmacologia , Saccharomyces cerevisiae/metabolismo , Proliferação de Células/efeitos dos fármacos , Ésteres do Colesterol/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Farmacorresistência Fúngica/genética , Deleção de Genes , Genes Fúngicos/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo
12.
Atherosclerosis ; 187(1): 101-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16216249

RESUMO

The esterification of free cholesterol (FC) in plasma, catalyzed by the enzyme lecithin:cholesterol acyltransferase (LCAT; EC 2.3.1.43), is a key process in lipoprotein metabolism. The resulting cholesteryl esters (CE) represent the main core lipids of low (LDL) and high density lipoproteins (HDL). Primary (familial) LCAT-deficiency (FLD) is a rare autosomal recessive genetic disease caused by the complete or near absence of LCAT activity. In fish-eye disease (FED), residual LCAT activity is still detectable. Here, we describe a 32-year-old patient with corneal opacity, very low LCAT activity, reduced amounts of CE (low HDL-cholesterol level), and elevated triglyceride (TG) values. The lipoprotein pattern was abnormal with regard to lipoprotein composition and concentration, but distinct lipoprotein classes were still present. Despite of typical features of glomerular proteinuria, creatinine clearance was normal. DNA sequencing and restiction fragment analyses revealed two separate mutations in the patient's LCAT gene: a previously described G to A transition in exon 4 converting Arg140 to His, inherited from his mother, and a novel G to C transversion in exon 2 converting Gly71 to Arg, inherited from his father, indicating that M.P. was a compound heterozygote. Determination of enzyme activities of recombinant LCAT proteins obtained upon transfection of COS-7 cells with plasmids containing G71R-LCAT or wild-type LCAT cDNA revealed very low alpha- and absence of beta-LCAT activity for the G71R mutant. The identification of the novel G71R LCAT mutation supports the proposed molecular model for the enzyme implying that the "lid" domain at residues 50-74 is involved in enzyme:substrate interaction. Our data are in line with the hypothesis that a key event in the etiology of FLD is the loss of distinct lipoprotein fractions.


Assuntos
Heterozigoto , Deficiência da Lecitina Colesterol Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/fisiologia , Adulto , Animais , Células COS , Chlorocebus aethiops , Colesterol/metabolismo , DNA Complementar/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Lipoproteínas/química , Masculino , Fenótipo , Análise de Sequência de DNA
13.
J Lipid Res ; 45(2): 356-65, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14594997

RESUMO

Lipoprotein lipase (LPL) is the only known enzyme in the capillary endothelium of peripheral tissues that hydrolizes plasma triglycerides and provides fatty acids (FAs) for their subsequent tissue uptake. Previously, we demonstrated that mice that express LPL exclusively in muscle develop essentially normal fat mass despite the absence of LPL and the deprivation of nutritionally derived FAs in adipose tissue (AT). Using this mouse model, we now investigated the metabolic response to LPL deficiency in AT that enables maintenance of normal AT mass. We show that the rate of FA production was 1.8-fold higher in LPL-deficient AT than in control AT. The levels of mRNA and enzymatic activities of important enzymes involved in FA and triglyceride biosynthesis were induced concomitantly. Increased plasma glucose clearing and (14)C-deoxyglucose uptake into LPL-deficient mouse fat pads indicated that glucose provided the carbon source for lipid synthesis. Leptin expression was decreased in LPL-deficient AT. Finally, the induction of de novo FA synthesis in LPL-deficient AT was associated with increased expression and processing of sterol regulatory element binding protein 1 (SREBP-1), together with an increase in INSIG-1 expression. These results suggest that in the absence of LPL in AT, lipogenesis is activated through increased SREBP-1 expression and processing triggered by decreased availability of nutrition-derived FAs, elevated insulin, and low leptin levels.


Assuntos
Tecido Adiposo/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos/metabolismo , Lipase Lipoproteica/metabolismo , Fatores de Transcrição , Triglicerídeos/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Ligação a DNA/genética , Dieta , Endotélio/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Insulina/metabolismo , Leptina/metabolismo , Lipídeos/biossíntese , Lipase Lipoproteica/genética , Camundongos , Músculos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1
14.
Lab Invest ; 83(2): 259-69, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12594240

RESUMO

Free fatty acids (FFA) are liberated from triglyceride-rich lipoproteins by lipoprotein lipase (LPL) and are considered to be a principal energy source for the heart. The peroxisome proliferator-activated receptor alpha (PPARalpha) is a key regulator of FFA catabolism. To investigate its role in cardiac muscle metabolism, transgenic mice overexpressing LPL in skeletal and cardiac muscle were bred on a PPARalpha knockout background. Fifty-five percent of male animals lacking PPARalpha and overexpressing LPL died within 4 months after birth. In contrast, females of this genotype stayed alive. Deceased animals exhibited cardiopulmonary congestion but had no increase of neutral lipids in the heart. Changes in plasma glucose, FFA, lactate, and triglycerides did not clearly account for gender-specific differences in mortality; however, they indicated a critical role for PPARalpha during fasting. Analysis of cardiac function revealed that in isolated perfused hearts, left ventricular developed pressure (a measure of contractility) was markedly lower in PPARalpha knockout mice overexpressing LPL compared with controls. Glucose uptake of isolated perfused hearts was significantly higher in PPARalpha knockout mice with both normal or increased LPL expression. However, uptake of FFA was not different among genotypes. In contrast, fasted FFA levels were significantly lower in cardiac muscle of PPARalpha knockout mice with normal LPL expression (-26%) and PPARalpha knockout mice overexpressing LPL (-38%) compared with controls. Our results indicate a critical role for PPARalpha in myocardial pump function and suggest that mouse models combining different genetic effects such as PPARalpha knockout mice overexpressing muscle LPL may be useful to study cardiomyopathies.


Assuntos
Cardiomiopatias/enzimologia , Lipase Lipoproteica/metabolismo , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Receptores Citoplasmáticos e Nucleares , Fatores de Transcrição , Animais , Peso Corporal , Cardiomiopatias/genética , Cardiomiopatias/mortalidade , Cardiomiopatias/patologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Técnicas In Vitro , Longevidade , Masculino , Camundongos , Camundongos Knockout/genética , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Nordefrin/farmacologia , Perfusão , Receptores Citoplasmáticos e Nucleares/genética , Fatores Sexuais , Estrofantinas/farmacologia , Taxa de Sobrevida , Fatores de Transcrição/genética , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...