Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(9): 180, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548768

RESUMO

KEY MESSAGE: GWAS identified 19 QTLs for resistance to Sclerotinia minor, 11 of them co-locating with red leaf color. Lower disease incidence was observed in red and dark red accessions. Lettuce (Lactuca sativa L.), one of the most economically important vegetables grown primarily in moderate climates around the world, is susceptible to many diseases including lettuce drop caused by the soilborne fungus Sclerotinia minor. Complete resistance to S. minor has not been identified in cultivated lettuce or its wild relatives. We conducted five experiments over 4 years with the diversity panel of almost 500 lettuce accessions to evaluate their response to the pathogen in an artificially infested field. The lowest disease incidence (DI) was observed in cultivars Eruption, Infantry, and Annapolis (median DI of 12.1-17.5%), while the highest DI was recorded for cultivars Reine des Glaces, Wayahead, and line FL. 43007 (median DI of 81.0-95.2%). Overall, significantly lower DI was observed in red and dark red accessions compared to those with a lower anthocyanin content. Genome-wide association mapping identified 19 QTLs for resistance to S. minor, 21 for the presence of red leaf color or its variations caused by the anthocyanin content, and one for the green color intensity. Eleven of the QTLs for disease resistance were located within 10 Mb of the loci associated with red color or anthocyanin content identified in this diversity panel. The frequent, non-random co-location of QTLs, together with the lower DI observed in red and dark red accessions suggests that lettuce interaction with S. minor may be partly influenced by anthocyanins. We have identified RLL2 and ANS, the genes of the anthocyanin biosynthesis pathway that co-locate with resistance QTLs, as candidates for functional studies to ascertain the involvement of anthocyanins in lettuce resistance against S. minor. Resistance QTLs closely linked with QTLs for anthocyanin content could be used to develop lettuce with a relatively high partial resistance and red color, while those not associated with anthocyanins could be used to develop partially resistant cultivars of green color.


Assuntos
Antocianinas , Lactuca , Lactuca/genética , Lactuca/microbiologia , Antocianinas/metabolismo , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico
2.
Theor Appl Genet ; 135(6): 2009-2024, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35419653

RESUMO

KEY MESSAGE: GWAS identified 63 QTLs for resistance to downy mildew. Though QTLs were distributed across all chromosomes, the genomic regions frequently associated with resistance were located on chromosomes 4 and 5. Lettuce downy mildew is one of the most economically important diseases of cultivated lettuce worldwide. We have applied the genome-wide association mapping (GWAS) approach to detect QTLs for field resistance to downy mildew in the panel of 496 accessions tested in 21 field experiments. The analysis identified 131 significant marker-trait associations that could be grouped into 63 QTLs. At least 51 QTLs were novel, while remaining 12 QTLs overlapped with previously described QTLs for lettuce field resistance to downy mildew. Unlike race-specific, dominant Dm genes that mostly cluster on three out of nine lettuce chromosomes, QTLs (qDMR loci) for polygenic resistance are randomly distributed across all nine chromosomes. The genomic regions frequently associated with lettuce field resistance to downy mildew are located on chromosomes 4 and 5 and could be used for detailed study of the mechanism of polygenic resistance. The most resistant accessions identified in the current study (cvs. Auburn, Grand Rapids, Romabella, PI 226514, and PI 249536) are being incorporated into our breeding program. Markers closely linked to the resistance QTLs could be potentially used for marker-assisted selection, or in combination with other markers in the genome, for a combined genomic and marker-assisted selection. Up to date this is the most comprehensive study of QTLs for field resistance to downy mildew and the first study that uses GWAS for mapping disease resistance loci in lettuce.


Assuntos
Oomicetos , Peronospora , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Lactuca/genética , Melhoramento Vegetal , Doenças das Plantas/genética
3.
Plant Dis ; 106(10): 2583-2590, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35285269

RESUMO

Spring mix is a popular packaged salad that contains lettuce (Lactuca sativa L.) as one of its main ingredients. Plants for baby leaf lettuce (BLL) production are grown at very high densities, which enhances the occurrence of bacterial leaf spot (BLS) caused by Xanthomonas hortorum pv. vitians (Xhv), a disease that can make the crop unmarketable. The market demands disease-free, high-quality BLL all year round. Growing highly BLS-resistant cultivars will reduce loss of yield and quality, thus minimizing economic detriment to lettuce and spring mix growers. The research objectives were to identify lettuce accessions resistant to BLS and associated quantitative trait loci (QTL). A total of 495 lettuce accessions were screened with six isolates (BS0347, BS2861, BS3127, L7, L44, and Sc8B) of Xhv. Accessions showing overall high-level resistance to all tested Xhv isolates were 'Bunte Forellen', PI 226514, 'La Brillante', ARM09-161-10-1-4, 'Grenadier', 'Bella', PI 491210, 'Delight', and 'Romana Verde del Mercado'. Genome-wide association studies of BLS resistance by mixed linear model analyses identified significant QTLs on four lettuce chromosomes (2, 4, 6, and 8). The most significant QTL was on Chromosome 8 (P = 1.42 × 10-7), which explained 6.7% of total phenotypic variation for the disease severity. Accessions with a high level of resistance detected in this study are valuable resources for lettuce germplasm improvement. Molecular markers closely linked to QTLs can be considered for marker-assisted selection to develop new BLL lettuce cultivars with resistance to multiple races of Xhv.


Assuntos
Lactuca , Locos de Características Quantitativas , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Lactuca/genética , Lactuca/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Xanthomonas
4.
Theor Appl Genet ; 133(6): 1947-1966, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32123958

RESUMO

KEY MESSAGE: Two major QTL, one for shelf life that corresponds to qSL4 and one, qDEV7, for developmental rate, were identified. Associated markers will be useful in breeding for improved fresh-cut lettuce. Fresh-cut lettuce in packaged salad can have short shelf life, and visible deterioration may start within a week after processing. Yield and developmental rate are an important aspect of lettuce production. Genetic diversity and genome-wide association studies (GWAS) were performed on 493 accessions with the genotypic data of 4615 high-quality single nucleotide polymorphism markers. Population structure (Q), principal component (PC), and phylogenetic analyses displayed genetic relationships associated with lettuce types and geographic distribution. Data for shelf life, yield, developmental rate, and their stability indices were used for statistical analysis, and GWAS was performed by general and mixed linear models. The genetic relationship among the individuals was incorporated into the models using kinship matrix, PC, and Q. Broad-sense heritability (H2) across environments was 0.43 for shelf life, 0.36 for yield, and 0.60 for developmental rate. There was a negative correlation between yield and developmental rate. Significant marker-trait association (SMTA) was detected for shelf life on chromosome 4. The most significant quantitative trait locus (QTL,  qSL4, P = 2.23E-17) explained 24% of the total phenotypic variation (R2). The major QTL for developmental rate was detected on chromosome 7 (qDEV7, P = 2.43E-16, R2 = 17%), while additional QTLs with smaller effect were found in all chromosomes. No SMTA was detected for yield. The study identified lettuce accessions with extended and stable shelf life, stable yield, and desirable developmental rate. Molecular markers closely linked to traits can be applied for selection of preferable genotypes and for identification of genes associated with these traits.


Assuntos
Ligação Genética , Lactuca/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Armazenamento de Alimentos , Estudos de Associação Genética , Genótipo , Lactuca/fisiologia , Desequilíbrio de Ligação , Fenótipo , Filogenia , Análise de Componente Principal , Característica Quantitativa Herdável
5.
PLoS One ; 12(5): e0177898, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542451

RESUMO

Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this research was to identify quantitative trait loci (QTL) for stripe rust resistance in PI 480035. A spring wheat, "Avocet Susceptible" (AvS), was crossed with PI 480035 to develop a biparental population of 110 recombinant inbred lines (RIL). The population was evaluated in the field in 2013 and 2014 and seedling reactions were examined against three races (PSTv-14, PSTv-37, and PSTv-40) of the pathogen under controlled conditions. The population was genotyped with genotyping-by-sequencing and microsatellite markers across the whole wheat genome. A major QTL, QYr.wrsggl1-1BS was identified on chromosome 1B. The closest flanking markers were Xgwm273, Xgwm11, and Xbarc187 1.01 cM distal to QYr.wrsggl1-1BS, Xcfd59 0.59 cM proximal and XA365 3.19 cM proximal to QYr.wrsggl1-1BS. Another QTL, QYr.wrsggl1-3B, was identified on 3B, which was significant only for PSTv-40 and was not significant in the field, indicating it confers a race-specific resistance. Comparison with markers associated with previously reported Yr genes on 1B (Yr64, Yr65, and YrH52) indicated that QYr.wrsggl1-1BS is potentially a novel stripe rust resistance gene that can be incorporated into modern breeding materials, along with other all-stage and adult-plant resistance genes to develop cultivars that can provide durable resistance.


Assuntos
Basidiomycota/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/genética , Triticum/genética , Cromossomos de Plantas , DNA de Plantas/genética , Marcadores Genéticos , Humanos , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Estações do Ano , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA