Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(1): 49-58, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971296

RESUMO

Conjugates of therapeutic oligonucleotides (ONs) including peptide conjugates, provide a potential solution to the major challenge of specific tissue delivery faced by this class of drugs. Conjugations are often positioned terminal at the ONs, although internal placement of other chemical modifications are known to be of critical importance. The introduction of internal conjugation handles in chemically modified ONs require highly specialized and expensive nucleoside phosphoramidites. Here, we present a method for synthesizing a library of peptide-siRNA conjugates by conjugation at internal phosphorous positions via sulfonylphosphoramidate modifications incorporated into the sense strand. The sulfonylphosphoramidate modification offers benefits as it can be directly incorporated into chemically modified ONs by simply changing the oxidation step during synthesis, and furthermore holds the potential to create multifunctionalized therapeutic ONs. We have developed a workflow using a novel pH-controlled amine-to-amine linker that yields peptide-siRNA conjugates linked via amide bonds, and we have synthesized conjugates between GLP1 peptides and a HPRT1 siRNA as a model system. The in vitro activity of the conjugates was tested by GLP1R activity and knockdown of the HPRT1 gene. We found that conjugation near the 3'-end is more favorable than certain central internal positions and different internal conjugation strategies were compared.


Assuntos
Oligonucleotídeos , Peptídeos , RNA Interferente Pequeno , Aminas/química , Oligonucleotídeos/química , Peptídeos/química , RNA Interferente Pequeno/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-34413118

RESUMO

INTRODUCTION: Insulin icodec is a novel, long-acting insulin analog designed to cover basal insulin requirements with once-weekly subcutaneous administration. Here we describe the molecular engineering and the biological and pharmacological properties of insulin icodec. RESEARCH DESIGN AND METHODS: A number of in vitro assays measuring receptor binding, intracellular signaling as well as cellular metabolic and mitogenic responses were used to characterize the biological properties of insulin icodec. To evaluate the pharmacological properties of insulin icodec in individuals with type 2 diabetes, a randomized, double-blind, double-dummy, active-controlled, multiple-dose, dose escalation trial was conducted. RESULTS: The long half-life of insulin icodec was achieved by introducing modifications to the insulin molecule aiming to obtain a safe, albumin-bound circulating depot of insulin icodec, providing protracted insulin action and clearance. Addition of a C20 fatty diacid-containing side chain imparts strong, reversible albumin binding, while three amino acid substitutions (A14E, B16H and B25H) provide molecular stability and contribute to attenuating insulin receptor (IR) binding and clearance, further prolonging the half-life. In vitro cell-based studies showed that insulin icodec activates the same dose-dependent IR-mediated signaling and metabolic responses as native human insulin (HI). The affinity of insulin icodec for the insulin-like growth factor-1 receptor was proportionately lower than its binding to the IR, and the in vitro mitogenic effect of insulin icodec in various human cells was low relative to HI. The clinical pharmacology trial in people with type 2 diabetes showed that insulin icodec was well tolerated and has pharmacokinetic/pharmacodynamic properties that are suited for once-weekly dosing, with a mean half-life of 196 hours and close to even distribution of glucose-lowering effect over the entire dosing interval of 1 week. CONCLUSIONS: The molecular modifications introduced into insulin icodec provide a novel basal insulin with biological and pharmacokinetic/pharmacodynamic properties suitable for once-weekly dosing. TRIAL REGISTRATION NUMBER: NCT02964104.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Insulina de Ação Prolongada , Insulina Regular Humana
3.
Protein Expr Purif ; 186: 105910, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34089870

RESUMO

Expression of recombinant proteins traditionally require a cellular system to transcribe and translate foreign DNA to a desired protein. The process requires special knowledge of the specific cellular metabolism in use and is often time consuming and labour intensive. A cell free expression system provides an opportunity to express recombinant proteins without consideration of the living cell. Instead, a cell free system relies on either a cellular lysate or recombinant proteins to carry out protein synthesis, increasing overall production speed and ease of handling. The one-pot cell free setup is commonly known as an in vitro transcription/translation reaction (IVTT). Here we focused on a PURE (Protein synthesis Using Recombinant Elements) IVTT system based on recombinant proteins from Escherichia coli. We evaluated the cell free system's ability to express functional insulin analogues compared to Saccharomyces cerevisiae, a well-established system for large scale production of recombinant human insulin and insulin analogues. Significantly, it was found that correct insulin expression and folding was governed by the inherent properties of the primary amino acids sequence of insulin, whereas the eukaryotic features of the expression system apparently play a minor role. The IVTT system successfully produced insulin analogues identical in structure and with similar insulin receptor affinity to those produced by yeast. In conclusion we demonstrate that the PURE IVTT system is highly suited for expressing soluble molecules with higher order features and multiple disulphide bridges.


Assuntos
Sistema Livre de Células , Proteínas Recombinantes , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Insulina/análise , Insulina/química , Insulina/genética , Insulina/metabolismo , Biossíntese de Proteínas/genética , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Nat Commun ; 11(1): 3746, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719315

RESUMO

Recently, the clinical proof of concept for the first ultra-long oral insulin was reported, showing efficacy and safety similar to subcutaneously administered insulin glargine. Here, we report the molecular engineering as well as biological and pharmacological properties of these insulin analogues. Molecules were designed to have ultra-long pharmacokinetic profile to minimize variability in plasma exposure. Elimination plasma half-life of ~20 h in dogs and ~70 h in man is achieved by a strong albumin binding, and by lowering the insulin receptor affinity 500-fold to slow down receptor mediated clearance. These insulin analogues still stimulate efficient glucose disposal in rats, pigs and dogs during constant intravenous infusion and euglycemic clamp conditions. The albumin binding facilitates initial high plasma exposure with a concomitant delay in distribution to peripheral tissues. This slow appearance in the periphery mediates an early transient hepato-centric insulin action and blunts hypoglycaemia in dogs in response to overdosing.


Assuntos
Insulina/administração & dosagem , Engenharia de Proteínas , Administração Oral , Sequência de Aminoácidos , Animais , Glicemia/metabolismo , Simulação por Computador , Cães , Relação Dose-Resposta a Droga , Overdose de Drogas/sangue , Técnica Clamp de Glucose , Meia-Vida , Humanos , Hiperinsulinismo/tratamento farmacológico , Hipoglicemia/diagnóstico , Insulina/análogos & derivados , Insulina/química , Insulina/farmacocinética , Masculino , Estabilidade Proteica , Proteólise , Ratos Sprague-Dawley , Suínos , Resultado do Tratamento
6.
PLoS One ; 7(5): e34274, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590494

RESUMO

AIMS/HYPOTHESIS: There is controversy with respect to molecular characteristics of insulin analogues. We report a series of experiments forming a comprehensive characterisation of the long acting insulin analogues, glargine and detemir, in comparison with human insulin, IGF-1, and the super-mitogenic insulin, X10. METHODS: We measured binding of ligands to membrane-bound and solubilised receptors, receptor activation and mitogenicity in a number of cell types. RESULTS: Detemir and glargine each displayed a balanced affinity for insulin receptor (IR) isoforms A and B. This was also true for X10, whereas IGF-1 had a higher affinity for IR-A than IR-B. X10 and glargine both exhibited a higher relative IGF-1R than IR binding affinity, whereas detemir displayed an IGF-1R:IR binding ratio of ≤ 1. Ligands with high relative IGF-1R affinity also had high affinity for IR/IGF-1R hybrid receptors. In general, the relative binding affinities of the analogues were reflected in their ability to phosphorylate the IR and IGF-1R. Detailed analysis revealed that X10, in contrast to the other ligands, seemed to evoke a preferential phosphorylation of juxtamembrane and kinase domain phosphorylation sites of the IR. Sustained phosphorylation was only observed from the IR after stimulation with X10, and after stimulation with IGF-1 from the IGF-1R. Both X10 and glargine showed an increased mitogenic potency compared to human insulin in cells expressing many IGF-1Rs, whereas only X10 showed increased mitogenicity in cells expressing many IRs. CONCLUSIONS: Detailed analysis of receptor binding, activation and in vitro mitogenicity indicated no molecular safety concern with detemir.


Assuntos
Hipoglicemiantes/farmacocinética , Insulina de Ação Prolongada/farmacocinética , Insulina Regular Humana/farmacocinética , Fator de Crescimento Insulin-Like I/análogos & derivados , Receptor IGF Tipo 1/metabolismo , Células Cultivadas , Feminino , Humanos , Hipoglicemiantes/farmacologia , Insulina Detemir , Insulina Glargina , Insulina de Ação Prolongada/farmacologia , Insulina Regular Humana/farmacologia , Fator de Crescimento Insulin-Like I/farmacocinética , Fator de Crescimento Insulin-Like I/farmacologia , Mitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Receptor IGF Tipo 1/genética
7.
Biochim Biophys Acta ; 1616(1): 1-84, 2003 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-14507421

RESUMO

In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing the characteristic seven-transmembrane-segment (STMS) topography. Years of intensive research have resulted in cloning of five receptor subtypes (sst(1)-sst(5)), one of which is represented by two splice variants (sst(2A) and sst(2B)). The individual subtypes, functionally coupled to the effectors of signal transduction, are differentially expressed throughout the mammalian organism, with corresponding differences in physiological impact. It is evident that receptor function, from a physiological point of view, cannot simply be reduced to the accumulated operations of individual receptors. Far from being isolated functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual receptor subtypes are highly cell-specific and vary with the co-expression of different-ligand receptors. However, the question is how to quantify the relative contributions of individual receptor subtypes to the integration of transduced signals, ultimately the result of collective receptor activity. The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype-selective analogues. Several have become available.


Assuntos
Receptores de Somatostatina/química , Receptores de Somatostatina/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas , Receptores de Somatostatina/classificação , Receptores de Somatostatina/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...