Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 5): 200-209, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35506765

RESUMO

Phosphoglucomutase 1 (PGM1) plays a central role in glucose homeostasis in human cells. Missense variants of this enzyme cause an inborn error of metabolism, which is categorized as a congenital disorder of glycosylation. Here, two disease-related variants of PGM1, T337M and G391V, which are both located in domain 3 of the four-domain protein, were characterized via X-ray crystallography and biochemical assays. The studies show multiple impacts resulting from these dysfunctional variants, including both short- and long-range structural perturbations. In the T337M variant these are limited to a small shift in an active-site loop, consistent with reduced enzyme activity. In contrast, the G391V variant produces a cascade of structural perturbations, including displacement of both the catalytic phosphoserine and metal-binding loops. This work reinforces several themes that were found in prior studies of dysfunctional PGM1 variants, including increased structural flexibility and the outsized impacts of mutations affecting interdomain interfaces. The molecular mechanisms of PGM1 variants have implications for newly described inherited disorders of related enzymes.


Assuntos
Doença de Depósito de Glicogênio , Fosfoglucomutase , Domínio Catalítico , Cristalografia por Raios X , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/metabolismo , Humanos , Mutação de Sentido Incorreto , Fosfoglucomutase/química , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo
2.
Amino Acids ; 53(12): 1863-1874, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34792644

RESUMO

L-Thioproline (L-thiazolidine-4-carboxylate, L-T4C) is a cyclic sulfur-containing analog of L-proline found in multiple kingdoms of life. The oxidation of L-T4C leads to L-cysteine formation in bacteria, plants, mammals, and protozoa. The conversion of L-T4C to L-Cys in bacterial cell lysates has been attributed to proline dehydrogenase and L-Δ1-pyrroline-5-carboxylate (P5C) reductase (PYCR) enzymes but detailed kinetic studies have not been conducted. Here, we characterize the dehydrogenase activity of human PYCR isozymes 1 and 2 with L-T4C using NAD(P)+ as the hydride acceptor. Both PYCRs exhibit significant L-T4C dehydrogenase activity; however, PYCR2 displays nearly tenfold higher catalytic efficiency (136 M-1 s-1) than PYCR1 (13.7 M-1 s-1). Interestingly, no activity was observed with either L-Pro or the analog DL-thiazolidine-2-carboxylate, indicating that the sulfur at the 4-position is critical for PYCRs to utilize L-T4C as a substrate. Inhibition kinetics show that L-Pro is a competitive inhibitor of PYCR1 [Formula: see text] with respect to L-T4C, consistent with these ligands occupying the same binding site. We also confirm by mass spectrometry that L-T4C oxidation by PYCRs leads to cysteine product formation. Our results suggest a new enzyme function for human PYCRs in the metabolism of L-T4C.


Assuntos
Pirrolina Carboxilato Redutases/metabolismo , Tiazolidinas/metabolismo , Sítios de Ligação/fisiologia , Cisteína/metabolismo , Humanos , Cinética , Prolina/metabolismo , Pirróis/metabolismo
3.
Protein Sci ; 30(8): 1714-1722, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048122

RESUMO

Aldehyde dehydrogenase 4A1 (ALDH4A1) catalyzes the final steps of both proline and hydroxyproline catabolism. It is a dual substrate enzyme that catalyzes the NAD+ -dependent oxidations of L-glutamate-γ-semialdehyde to L-glutamate (proline metabolism), and 4-hydroxy-L-glutamate-γ-semialdehyde to 4-erythro-hydroxy-L-glutamate (hydroxyproline metabolism). Here we investigated the inhibition of mouse ALDH4A1 by the six stereoisomers of proline and 4-hydroxyproline using steady-state kinetics and X-ray crystallography. Trans-4-hydroxy-L-proline is the strongest of the inhibitors studied, characterized by a competitive inhibition constant of 0.7 mM, followed by L-proline (1.9 mM). The other compounds are very weak inhibitors (approximately 10 mM or greater). Insight into the selectivity for L-stereoisomers was obtained by solving crystal structures of ALDH4A1 complexed with trans-4-hydroxy-L-proline and trans-4-hydroxy-D-proline. The structures suggest that the 10-fold greater preference for the L-stereoisomer is due to a serine residue that hydrogen bonds to the amine group of trans-4-hydroxy-L-proline. In contrast, the amine group of the D-stereoisomer lacks a direct interaction with the enzyme due to a different orientation of the pyrrolidine ring. These results suggest that hydroxyproline catabolism is subject to substrate inhibition by trans-4-hydroxy-L-proline, analogous to the known inhibition of proline catabolism by L-proline. Also, drugs targeting the first enzyme of hydroxyproline catabolism, by elevating the level of trans-4-hydroxy-L-proline, may inadvertently impair proline catabolism by the inhibition of ALDH4A1.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase , Hidroxiprolina/química , Prolina/química , 1-Pirrolina-5-Carboxilato Desidrogenase/antagonistas & inibidores , 1-Pirrolina-5-Carboxilato Desidrogenase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Animais , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Estereoisomerismo
4.
Amino Acids ; 53(12): 1817-1834, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34003320

RESUMO

Proline metabolism features prominently in the unique metabolism of cancer cells. Proline biosynthetic genes are consistently upregulated in multiple cancers, while the proline catabolic enzyme proline dehydrogenase has dual, context-dependent pro-cancer and pro-apoptotic functions. Furthermore, the cycling of proline and Δ1-pyrroline-5-carboxylate through the proline cycle impacts cellular growth and death pathways by maintaining redox homeostasis between the cytosol and mitochondria. Here we focus on the last enzyme of proline biosynthesis, Δ1-pyrroline-5-carboxylate reductase, known as PYCR in humans. PYCR catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to proline and forms the reductive half of the proline metabolic cycle. We review the research on the three-dimensional structure, biochemistry, inhibition, and cancer biology of PYCR. To provide a global view of PYCR gene upregulation in cancer, we mined RNA transcript databases to analyze differential gene expression in 28 cancer types. This analysis revealed strong, widespread upregulation of PYCR genes, especially PYCR1. Altogether, the research over the past 20 years makes a compelling case for PYCR as a cancer therapy target. We conclude with a discussion of some of the major challenges for the field, including developing isoform-specific inhibitors, elucidating the function of the long C-terminus of PYCR1/2, and characterizing the interactome of PYCR.


Assuntos
Expressão Gênica/genética , Neoplasias/genética , Prolina/genética , Pirrolina Carboxilato Redutases/genética , Animais , Humanos , Regulação para Cima/genética
5.
Biochemistry ; 59(36): 3285-3289, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32841567

RESUMO

Protein biochemistry protocols typically include disulfide bond reducing agents to guard against unwanted thiol oxidation and protein aggregation. Commonly used disulfide bond reducing agents include dithiothreitol, ß-mercaptoethanol, glutathione, and the tris(alkyl)phosphine compounds tris(2-carboxyethyl)phosphine (TCEP) and tris(3-hydroxypropyl)phosphine (THPP). While studying the catalytic activity of the NAD(P)H-dependent enzyme Δ1-pyrroline-5-carboxylate reductase, we unexpectedly observed a rapid non-enzymatic chemical reaction between NAD+ and the reducing agents TCEP and THPP. The product of the reaction exhibits a maximum ultraviolet absorbance peak at 334 nm and forms with an apparent association rate constant of 231-491 M-1 s-1. The reaction is reversible, and nuclear magnetic resonance characterization (1H, 13C, and 31P) of the product revealed a covalent adduct between the phosphorus of the tris(alkyl)phosphine reducing agent and the C4 atom of the nicotinamide ring of NAD+. We also report a 1.45 Å resolution crystal structure of short-chain dehydrogenase/reductase with the NADP+-TCEP reaction product bound in the cofactor binding site, which shows that the adduct can potentially inhibit enzymes. These findings serve to caution researchers when using TCEP or THPP in experimental protocols with NAD(P)+. Because NAD(P)+-dependent oxidoreductases are widespread in nature, our results may be broadly relevant.


Assuntos
Burkholderia/enzimologia , Ditiotreitol/química , NAD/metabolismo , Fosfinas/química , Substâncias Redutoras/química , Redutases-Desidrogenases de Cadeia Curta/química , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dissulfetos/química , Oxirredução , Conformação Proteica , Domínios Proteicos
6.
J Biol Chem ; 295(38): 13239-13249, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32723870

RESUMO

The siderophore biosynthetic enzyme A (SidA) ornithine hydroxylase from Aspergillus fumigatus is a fungal disease drug target involved in the production of hydroxamate-containing siderophores, which are used by the pathogen to sequester iron. SidA is an N-monooxygenase that catalyzes the NADPH-dependent hydroxylation of l-ornithine through a multistep oxidative mechanism, utilizing a C4a-hydroperoxyflavin intermediate. Here we present four new crystal structures of SidA in various redox and ligation states, including the first structure of oxidized SidA without NADP(H) or l-ornithine bound (resting state). The resting state structure reveals a new out active site conformation characterized by large rotations of the FAD isoalloxazine around the C1-'C2' and N10-C1' bonds, coupled to a 10-Å movement of the Tyr-loop. Additional structures show that either flavin reduction or the binding of NADP(H) is sufficient to drive the FAD to the in conformation. The structures also reveal protein conformational changes associated with the binding of NADP(H) and l-ornithine. Some of these residues were probed using site-directed mutagenesis. Docking was used to explore the active site of the out conformation. These calculations identified two potential ligand-binding sites. Altogether, our results provide new information about conformational dynamics in flavin-dependent monooxygenases. Understanding the different active site conformations that appear during the catalytic cycle may allow fine-tuning of inhibitor discovery efforts.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Domínio Catalítico , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/química , NADP/química , Ornitina/química
7.
J Inherit Metab Dis ; 43(4): 861-870, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32057119

RESUMO

Missense variants of human phosphoglucomutase 1 (PGM1) cause the inherited metabolic disease known as PGM1 deficiency. This condition is categorised as both a glycogen storage disease and a congenital disorder of glycosylation. Approximately 20 missense variants of PGM1 are linked to PGM1 deficiency, and biochemical studies have suggested that they fall into two general categories: those affecting the active site and catalytic efficiency, and those that appear to impair protein folding and/or stability. In this study, we characterise a novel variant of Arg422, a residue distal from the active site of PGM1 and the site of a previously identified disease-related variant (Arg422Trp). In prior studies, the R422W variant was found to produce insoluble protein in a recombinant expression system, precluding further in vitro characterisation. Here we investigate an alternative variant of this residue, Arg422Gln, which is amenable to experimental characterisation presumably due to its more conservative physicochemical substitution. Biochemical, crystallographic, and computational studies of R422Q establish that this variant causes only minor changes in catalytic efficiency and 3D structure, but is nonetheless dramatically reduced in stability. Unexpectedly, binding of a substrate analog is found to further destabilise the protein, in contrast to its stabilising effect on wild-type PGM1 and several other missense variants. This work establishes Arg422 as a lynchpin residue for the stability of PGM1 and supports the impairment of protein stability as a pathomechanism for variants that cause PGM1 deficiency. SYNOPSIS: Biochemical and structural studies of a missense variant far from the active site of human PGM1 identify a residue with a key role in enzyme stability.


Assuntos
Glucose/metabolismo , Doença de Depósito de Glicogênio/genética , Fosfoglucomutase/química , Conformação Proteica , Arginina/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Glucose/química , Doença de Depósito de Glicogênio/metabolismo , Humanos , Mutação de Sentido Incorreto , Fosfoglucomutase/genética , Dobramento de Proteína
8.
J Org Chem ; 84(15): 9627-9636, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264865

RESUMO

α-Phosphomannomutase/phosphoglucomutase (αPMM/PGM) from P. aeruginosa is involved in bacterial cell wall assembly and is implicated in P. aeruginosa virulence, yet few studies have addressed αPMM/PGM inhibition from this important Gram-negative bacterial human pathogen. Four structurally different α-d-glucopyranose 1-phosphate (αG1P) derivatives including 1-C-fluoromethylated analogues (1-3), 1,2-cyclic phosph(on)ate analogues (4-6), isosteric methylene phosphono analogues (7 and 8), and 6-fluoro-αG1P (9), were synthesized and assessed as potential time-dependent or reversible αPMM/PGM inhibitors. The resulting kinetic data were consistent with the crystallographic structures of the highly homologous Xanthomonas citri αPGM with inhibitors 3 and 7-9 binding to the enzyme active site (1.65-1.9 Å). These structural and kinetic insights will enhance the design of future αPMM/PGM inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfoglucomutase/antagonistas & inibidores , Fosfotransferases (Fosfomutases)/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Fosfatos Açúcares/farmacologia , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Modelos Moleculares , Estrutura Molecular , Fosfoglucomutase/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Pseudomonas aeruginosa/enzimologia , Fosfatos Açúcares/síntese química , Fosfatos Açúcares/química
9.
ACS Omega ; 4(4): 7029-7037, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31179410

RESUMO

Glucokinase phosphorylated a series of C-1 fluorinated α-d-gluco-heptuloses. These phosphorylated products were discovered to be inhibitors of α-phosphomannomutase/phosphoglucomutase (αPMM/PGM) and ß-phosphoglucomutase (ßPGM). Inhibition potency with both mutases inversely correlated to the degree of fluorination. Structural analysis with αPMM demonstrated the inhibitor binding to the active site, with the phosphate in the phosphate binding site and the anomeric hydroxyl directed to the catalytic site.

10.
Struct Dyn ; 6(2): 024703, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31041362

RESUMO

Enzymes are known to adopt various conformations at different points along their catalytic cycles. Here, we present a comprehensive analysis of 15 isomorphous, high resolution crystal structures of the enzyme phosphoglucomutase from the bacterium Xanthomonas citri. The protein was captured in distinct states critical to function, including enzyme-substrate, enzyme-product, and enzyme-intermediate complexes. Key residues in ligand recognition and regions undergoing conformational change are identified and correlated with the various steps of the catalytic reaction. In addition, we use principal component analysis to examine various subsets of these structures with two goals: (1) identifying sites of conformational heterogeneity through a comparison of room temperature and cryogenic structures of the apo-enzyme and (2) a priori clustering of the enzyme-ligand complexes into functionally related groups, showing sensitivity of this method to structural features difficult to detect by traditional methods. This study captures, in a single system, the structural basis of diverse substrate recognition, the subtle impact of covalent modification, and the role of ligand-induced conformational change in this representative enzyme of the α-D-phosphohexomutase superfamily.

11.
Am J Hum Genet ; 104(5): 835-846, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982613

RESUMO

Phosphoglucomutase 1 (PGM1) encodes the metabolic enzyme that interconverts glucose-6-P and glucose-1-P. Mutations in PGM1 cause impairment in glycogen metabolism and glycosylation, the latter manifesting as a congenital disorder of glycosylation (CDG). This unique metabolic defect leads to abnormal N-glycan synthesis in the endoplasmic reticulum (ER) and the Golgi apparatus (GA). On the basis of the decreased galactosylation in glycan chains, galactose was administered to individuals with PGM1-CDG and was shown to markedly reverse most disease-related laboratory abnormalities. The disease and treatment mechanisms, however, have remained largely elusive. Here, we confirm the clinical benefit of galactose supplementation in PGM1-CDG-affected individuals and obtain significant insights into the functional and biochemical regulation of glycosylation. We report here that, by using tracer-based metabolomics, we found that galactose treatment of PGM1-CDG fibroblasts metabolically re-wires their sugar metabolism, and as such replenishes the depleted levels of galactose-1-P, as well as the levels of UDP-glucose and UDP-galactose, the nucleotide sugars that are required for ER- and GA-linked glycosylation, respectively. To this end, we further show that the galactose in UDP-galactose is incorporated into mature, de novo glycans. Our results also allude to the potential of monosaccharide therapy for several other CDG.


Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Fibroblastos/metabolismo , Galactose/administração & dosagem , Fosfoglucomutase/deficiência , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Glucose/metabolismo , Células Cultivadas , Estudos de Coortes , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Glicosilação , Humanos
12.
Methods Enzymol ; 607: 241-267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30149860

RESUMO

Enzymes in the α-d-phosphohexomutase (PHM) superfamily catalyze a multistep reaction, entailing two successive phosphoryl transfers. Key to this reaction is a conserved phosphoserine in the active site, which serves alternately as a phosphoryl donor and acceptor during the catalytic cycle. In addition to its role in the enzyme mechanism, the phosphorylation state of the catalytic phosphoserine has recently been found to have widespread effects on the structural flexibility of enzymes in this superfamily. These effects must be carefully accounted for when assessing other perturbations to these enzymes, such as mutations or ligand binding. In this chapter, we focus on methods for assessing and modulating the phosphorylation state of the catalytic serine, as well as straightforward ways to probe the impacts of this modification on protein structure/flexibility. This knowledge is essential for producing homogeneous and stable samples of these proteins for biophysical studies. The methods described herein should be widely applicable to enzymes across the PHM superfamily and may also be useful in characterizing the effects of posttranslational modifications on other proteins.


Assuntos
Ensaios Enzimáticos/métodos , Fosfoglucomutase/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Domínio Catalítico/genética , Cristalografia por Raios X , Ensaios Enzimáticos/instrumentação , Corantes Fluorescentes/química , Modelos Moleculares , Fosfoglucomutase/química , Fosfoglucomutase/genética , Fosfoglucomutase/isolamento & purificação , Fosforilação , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos
13.
Structure ; 26(10): 1337-1345.e3, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30122451

RESUMO

Human phosphoglucomutase 1 (PGM1) plays a central role in cellular glucose homeostasis, catalyzing the conversion of glucose 1-phosphate and glucose 6-phosphate. Recently, missense variants of this enzyme were identified as causing an inborn error of metabolism, PGM1 deficiency, with features of a glycogen storage disease and a congenital disorder of glycosylation. Previous studies of selected PGM1 variants have revealed various mechanisms for enzyme dysfunction, including regions of structural disorder and side-chain rearrangements within the active site. Here, we examine variants within a substrate-binding loop in domain 4 (D4) of PGM1 that cause extreme impairment of activity. Biochemical, structural, and computational studies demonstrate multiple detrimental impacts resulting from these variants, including loss of conserved ligand-binding interactions and reduced mobility of the D4 loop, due to perturbation of its conformational ensemble. These potentially synergistic effects make this conserved ligand-binding loop a hotspot for disease-related variants in PGM1 and related enzymes.


Assuntos
Mutação de Sentido Incorreto , Fosfoglucomutase/química , Fosfoglucomutase/metabolismo , Domínio Catalítico , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfoglucomutase/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos
14.
PLoS One ; 12(8): e0183563, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837627

RESUMO

The key metabolic enzyme phosphoglucomutase 1 (PGM1) controls glucose homeostasis in most human cells. Four proteins related to PGM1, known as PGM2, PGM2L1, PGM3 and PGM5, and referred to herein as paralogs, are encoded in the human genome. Although all members of the same enzyme superfamily, these proteins have distinct substrate preferences and different functional roles. The recent association of PGM1 and PGM3 with inherited enzyme deficiencies prompts us to revisit sequence-structure and other relationships among the PGM1 paralogs, which are understudied despite their importance in human biology. Using currently available sequence, structure, and expression data, we investigated evolutionary relationships, tissue-specific expression profiles, and the amino acid preferences of key active site motifs. Phylogenetic analyses indicate both ancient and more recent divergence between the different enzyme sub-groups comprising the human paralogs. Tissue-specific protein and RNA expression profiles show widely varying patterns for each paralog, providing insight into function and disease pathology. Multiple sequence alignments confirm high conservation of key active site regions, but also reveal differences related to substrate specificity. In addition, we find that sequence variants of PGM2, PGM2L1, and PGM5 verified in the human population affect residues associated with disease-related mutants in PGM1 or PGM3. This suggests that inherited diseases related to dysfunction of these paralogs will likely occur in humans.


Assuntos
Perfilação da Expressão Gênica , Mutação , Fosfoglucomutase/genética , Sequência de Aminoácidos , Domínio Catalítico , Humanos , Filogenia , Homologia de Sequência de Aminoácidos
15.
Adv Protein Chem Struct Biol ; 109: 265-304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683921

RESUMO

Enzymes in the α-d-phosphohexomutases superfamily catalyze the reversible conversion of phosphosugars, such as glucose 1-phosphate and glucose 6-phosphate. These reactions are fundamental to primary metabolism across the kingdoms of life and are required for a myriad of cellular processes, ranging from exopolysaccharide production to protein glycosylation. The subject of extensive mechanistic characterization during the latter half of the 20th century, these enzymes have recently benefitted from biophysical characterization, including X-ray crystallography, NMR, and hydrogen-deuterium exchange studies. This work has provided new insights into the unique catalytic mechanism of the superfamily, shed light on the molecular determinants of ligand recognition, and revealed the evolutionary conservation of conformational flexibility. Novel associations with inherited metabolic disease and the pathogenesis of bacterial infections have emerged, spurring renewed interest in the long-appreciated functional roles of these enzymes.


Assuntos
Glucofosfatos/metabolismo , Fosfoglucomutase/química , Fosfoglucomutase/metabolismo , Sequência de Aminoácidos , Animais , Bactérias/química , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Infecções Bacterianas/enzimologia , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glucofosfatos/química , Glucofosfatos/genética , Humanos , Doenças Metabólicas/enzimologia , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Mutação , Ressonância Magnética Nuclear Biomolecular , Fosfoglucomutase/genética , Conformação Proteica , Alinhamento de Sequência
16.
J Biol Chem ; 292(23): 9652-9665, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28420730

RESUMO

The bifunctional flavoenzyme proline utilization A (PutA) catalyzes the two-step oxidation of proline to glutamate using separate proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase active sites. Because PutAs catalyze sequential reactions, they are good systems for studying how metabolic enzymes communicate via substrate channeling. Although mechanistically similar, PutAs vary widely in domain architecture, oligomeric state, and quaternary structure, and these variations represent different structural solutions to the problem of sequestering a reactive metabolite. Here, we studied PutA from Corynebacterium freiburgense (CfPutA), which belongs to the uncharacterized 3B class of PutAs. A 2.7 Šresolution crystal structure showed the canonical arrangement of PRODH, l-glutamate-γ-semialdehyde dehydrogenase, and C-terminal domains, including an extended interdomain tunnel associated with substrate channeling. The structure unexpectedly revealed a novel open conformation of the PRODH active site, which is interpreted to represent the non-activated conformation, an elusive form of PutA that exhibits suboptimal channeling. Nevertheless, CfPutA exhibited normal substrate-channeling activity, indicating that it isomerizes into the active state under assay conditions. Sedimentation-velocity experiments provided insight into the isomerization process, showing that CfPutA dimerizes in the presence of a proline analog and NAD+ These results are consistent with the morpheein model of enzyme hysteresis, in which substrate binding induces conformational changes that promote assembly of a high-activity oligomer. Finally, we used domain deletion analysis to investigate the function of the C-terminal domain. Although this domain contains neither catalytic residues nor substrate sites, its removal impaired both catalytic activities, suggesting that it may be essential for active-site integrity.


Assuntos
Proteínas de Bactérias/química , Corynebacterium/enzimologia , Proteínas de Membrana/química , NAD/química , Multimerização Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Corynebacterium/genética , Cristalografia por Raios X , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , NAD/genética , NAD/metabolismo , Oxirredução , Prolina/química , Prolina/genética , Prolina/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
17.
FEBS J ; 284(6): 937-947, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28117557

RESUMO

The enzyme phosphoglucomutase 1 (PGM1) plays a central role in glucose homeostasis. Clinical studies have identified mutations in human PGM1 as the cause of PGM1 deficiency, an inherited metabolic disease. One residue, Asp263, has two known variants associated with disease: D263G and D263Y. Biochemical studies have shown that these mutants are soluble and well folded, but have significant catalytic impairment. To better understand this catalytic defect, we determined crystal structures of these two missense variants, both of which reveal a similar and indirect structural change due to the loss of a conserved salt bridge between Asp263 and Arg293. The arginine reorients into the active site, making interactions with residues responsible for substrate binding. Biochemical studies also show that the catalytic phosphoserine of the missense variants is more stable to hydrolysis relative to wild-type enzyme. The structural perturbation resulting from mutation of this single amino acid reveals the molecular mechanism underlying PGM1 deficiency in these missense variants. DATABASE: Structural data are available in the PDB under the accession numbers 5JN5 and 5TR2.


Assuntos
Glucose/metabolismo , Doença de Depósito de Glicogênio/genética , Fosfoglucomutase/química , Conformação Proteica , Arginina/genética , Asparagina/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Glucose/química , Doença de Depósito de Glicogênio/metabolismo , Humanos , Cinética , Mutação de Sentido Incorreto , Fosfoglucomutase/genética , Ligação Proteica
18.
ACS Omega ; 2(11): 8445-8452, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457382

RESUMO

Phosphoglucosamine mutase (PNGM) is an evolutionarily conserved bacterial enzyme in the peptidoglycan biosynthetic pathway, catalyzing the reversible conversion between glucosamine 1- and 6-phosphate. Previous structural studies of PNGM from the pathogen Bacillus anthracis revealed its dimeric assembly and highlighted the rotational mobility of its C-terminal domain. Recent studies of two other enzymes in the same superfamily have demonstrated the long-range effects on the conformational flexibility associated with phosphorylation of the conserved, active site phosphoserine involved in phosphoryl transfer. Building on this work, we use a combination of experimental and computational studies to show that the active, phosphorylated version of B. anthracis PNGM has decreased flexibility relative to its inactive, dephosphorylated state. Limited proteolysis reveals an enhanced and accelerated cleavage of the dephosphorylated enzyme. 15N transverse relaxation-optimized NMR spectra corroborate a conformational adjustment with broadening and shifts of peaks relative to the phospho-enzyme. Electrostatic calculations indicate that residues in the mobile, C-terminal domain are linked to the phosphoserine by lines of attraction that are absent in the dephosphorylated enzyme. Phosphorylation-dependent changes in protein flexibility appear linked with the conformational change and enzyme mechanism in PNGM, establishing this as a conserved theme in multiple subgroups of the diverse α-d-phosphohexomutase superfamily.

19.
J Appl Crystallogr ; 49(Pt 6): 2235-2243, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980518

RESUMO

This paper describes the introduction of synchrotron-based macromolecular crystallography (MX) into an undergraduate laboratory class. An introductory 2 week experimental module on MX, consisting of four laboratory sessions and two classroom lectures, was incorporated into a senior-level biochemistry class focused on a survey of biochemical techniques, including the experimental characterization of proteins. Students purified recombinant protein samples, set up crystallization plates and flash-cooled crystals for shipping to a synchrotron. Students then collected X-ray diffraction data sets from their crystals via the remote interface of the Molecular Biology Consortium beamline (4.2.2) at the Advanced Light Source in Berkeley, CA, USA. Processed diffraction data sets were transferred back to the laboratory and used in conjunction with partial protein models provided to the students for refinement and model building. The laboratory component was supplemented by up to 2 h of lectures by faculty with expertise in MX. This module can be easily adapted for implementation into other similar undergraduate classes, assuming the availability of local crystallographic expertise and access to remote data collection at a synchrotron source.

20.
J Mol Biol ; 428(8): 1493-505, 2016 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-26972339

RESUMO

Human phosphoglucomutase 1 (PGM1) plays a central role in cellular glucose homeostasis, mediating the switch between glycolysis and gluconeogenesis through the conversion of glucose 1-phosphate and glucose 6-phosphate. Recent clinical studies have identified mutations in this enzyme as the cause of PGM1 deficiency, an inborn error of metabolism classified as both a glycogen storage disease and a congenital disorder of glycosylation. Reported here are the first crystal structures of two disease-related missense variants of PGM1, along with the structure of the wild-type enzyme. Two independent glycine-to-arginine substitutions (G121R and G291R), both affecting key active site loops of PGM1, are found to induce regions of structural disorder, as evidenced by a nearly complete loss of electron density for as many as 23 aa. The disordered regions are not contiguous in sequence to the site of mutation, and even cross domain boundaries. Other structural rearrangements include changes in the conformations of loops and side chains, some of which occur nearly 20 Šaway from the site of mutation. The induced structural disorder is correlated with increased sensitivity to proteolysis and lower-resolution diffraction, particularly for the G291R variant. Examination of the multi-domain effects of these G➔R mutations establishes a correlation between interdomain interfaces of the enzyme and missense variants of PGM1 associated with disease. These crystal structures provide the first insights into the structural basis of enzyme dysfunction in PGM1 deficiency and highlight a growing role for biophysical characterization of proteins in the field of precision medicine.


Assuntos
Doença de Depósito de Glicogênio/genética , Fosfoglucomutase/química , Arginina/genética , Cristalografia por Raios X , Citoplasma/metabolismo , Glicina/genética , Humanos , Modelos Moleculares , Mutação , Mutação de Sentido Incorreto , Peptídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...