Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662766

RESUMO

Amyotrophic lateral sclerosis is a devastating neurodegenerative disease, characterized by loss of central and peripheral motor neurones. Although the disease is clinically and genetically heterogeneous, axonal hyperexcitability is a commonly observed feature that has been suggested to reflect an early pathophysiological step linked to the neurodegenerative cascade. Therefore, it is important to clarify the mechanisms causing axonal hyperexcitability and how these relate to the clinical characteristics of patients. Measures derived directly from a nerve excitability recording are frequently used as study endpoints, even though their biophysical basis is difficult to deduce. Mathematical models can aid in the interpretation, but are only reliable when applied to group-averaged recordings. Consequently, model estimates of membrane properties cannot be compared to clinical characteristics or treatment effects in individual patients, posing a considerable limitation in heterogeneous diseases such as amyotrophic lateral sclerosis. To address these challenges, we revisited nerve excitability using a novel pattern-analysis-based approach (principal component analysis). We evaluated disease-specific patterns of excitability changes and established their biophysical origins. Based on the observed patterns, we developed novel compound measures of excitability that facilitate the implementation of this approach in clinical settings We found that excitability changes in amyotrophic lateral sclerosis patients (n = 161, median disease duration = 11 months) were characterized by four unique patterns compared to controls (n = 50, age-gender matched). These four patterns were best explained by changes in resting membrane potential (modulated by Na+/K + -currents), slow potassium- and sodium-currents (modulated by their gating kinetics) and refractory properties of the nerve. Consequently, we were able to show that altered gating of slow potassium-channels was associated with, and predictive of, the disease's progression rate on the amyotrophic lateral sclerosis functional rating scale. Based on these findings, we designed four composite measures that capture these properties to facilitate implementation outside of this study. Our findings demonstrate that nerve excitability changes in patients with amyotrophic lateral sclerosis are dominated by four distinct patterns, each with a distinct biophysical origin. Based on this new approach, we provide evidence that altered slow potassium-channel function may play a role in the rate of disease progression. The magnitudes of these patterns, quantified using either a similar approach or our novel composite measures, have potential as efficient measures to study membrane properties directly in amyotrophic lateral sclerosis patients, and thus aid prognostic stratification and trial design.

2.
J Neural Eng ; 20(5)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37774693

RESUMO

Objective.To simulate progressive motor neuron loss and collateral reinnervation in motor neuron diseases (MNDs) by developing a dynamic muscle model based on human single motor unit (MU) surface-electromyography (EMG) recordings.Approach.Single MU potentials recorded with high-density surface-EMG from thenar muscles formed the basic building blocks of the model. From the baseline MU pool innervating a muscle, progressive MU loss was simulated by removal of MUs, one-by-one. These removed MUs underwent collateral reinnervation with scenarios varying from 0% to 100%. These scenarios were based on a geometric variable, reflecting the overlap in MU territories using the spatiotemporal profiles of single MUs and a variable reflecting the efficacy of the reinnervation process. For validation, we tailored the model to generate compound muscle action potential (CMAP) scans, which is a promising surface-EMG method for monitoring MND patients. Selected scenarios for reinnervation that matched observed MU enlargements were used to validate the model by comparing markers (including the maximum CMAP and a motor unit number estimate (MUNE)) derived from simulated and recorded CMAP scans in a cohort of 49 MND patients and 22 age-matched healthy controls.Main results.The maximum CMAP at baseline was 8.3 mV (5th-95th percentile: 4.6 mV-11.8 mV). Phase cancellation caused an amplitude drop of 38.9% (5th-95th percentile, 33.0%-45.7%). To match observations, the geometric variable had to be set at 40% and the efficacy variable at 60%-70%. The Δ maximum CMAP between recorded and simulated CMAP scans as a function of fitted MUNE was -0.4 mV (5th-95th percentile = -4.0 - +2.4 mV).Significance.The dynamic muscle model could be used as a platform to train personnel in applying surface-EMG methods prior to their use in clinical care and trials. Moreover, the model may pave the way to compare biomarkers more efficiently, without directly posing unnecessary burden on patients.


Assuntos
Doença dos Neurônios Motores , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Potenciais de Ação/fisiologia , Neurônios Motores/fisiologia , Eletromiografia/métodos , Doença dos Neurônios Motores/diagnóstico , Doença dos Neurônios Motores/patologia , Degeneração Neural/patologia
3.
Clin Neurophysiol Pract ; 8: 123-131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554725

RESUMO

Objective: Electrophysiological techniques are emerging as an aid in identifying prognostic or therapeutic biomarkers in patients with spinal muscular atrophy (SMA), but electrophysiological assessments may be burdensome for patients. We, therefore, assessed feasibility and tolerability of multimodal peripheral non-invasive electrophysiological techniques in a cohort of patients with SMA. Methods: We conducted a single center, longitudinal cohort study investigating the feasibility and tolerability of applying multimodal electrophysiological techniques to the median nerve unilaterally. Techniques consisted of the compound muscle action potential scan, motor nerve excitability tests, repetitive nerve stimulation and sensory nerve action potential. We assessed tolerability using the numeric rating scale (NRS), ranging from 0 (no pain) to 10 (worst possible pain), and defined the protocol to be tolerable if the NRS score ≤ 3. The protocol was considered feasible if it could be performed according to test and quality standards. Results: We included 71 patients with SMA types 1-4 (median 39 years; range 13-67) and 63 patients at follow-up. The protocol was feasible in 98% of patients and was well-tolerated in up to 90% of patients. Median NRS score was 2 (range 0-6 at baseline and range 0-4 at follow-up (p < 0.01)). None of the patients declined follow-up assessment. Conclusions: Multimodal, peripheral, non-invasive, electrophysiological techniques applied to the median nerve are feasible and well-tolerated in adolescents and adults with SMA types 1-4. Significance: Our study supports the use of non-invasive multimodal electrophysiological assessments in adolescents and adults with SMA types 1-4.

4.
Pharmacol Res Perspect ; 10(4): e00983, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35881020

RESUMO

Altered motor neuron excitability in patients with amyotrophic lateral sclerosis (ALS) has been suggested to be an early pathophysiological mechanism associated with motor neuron death. Compounds that affect membrane excitability may therefore have disease-modifying effects. Through which mechanism(s), these compounds modulate membrane excitability is mostly provided by preclinical studies, yet remains challenging to verify in clinical studies. Here, we investigated how retigabine affects human myelinated motor axons by applying computational modeling to interpret the complex excitability changes in a recent trial involving 18 ALS patients. Compared to baseline, the post-dose excitability differences were modeled well by a hyperpolarizing shift of the half-activation potential of slow potassium (K+ )-channels (till 2 mV). These findings verify that retigabine targets slow K+ -channel gating and highlight the usefulness of computational models. Further developments of this approach may facilitate the identification of early target engagement and ultimately aid selecting responders leading to more personalized treatment strategies.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/tratamento farmacológico , Axônios/fisiologia , Carbamatos , Humanos , Neurônios Motores , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico
5.
Muscle Nerve ; 65(3): 317-325, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854491

RESUMO

INTRODUCTION/AIMS: Progressive axonal loss in multifocal motor neuropathy (MMN) is often assessed with nerve conduction studies (NCS), by recording maximum compound muscle action potentials (CMAPs). However, reinnervation maintains the CMAP amplitude until a significant portion of the motor unit (MU) pool is lost. Therefore, we performed more informative CMAP scans to study MU characteristics in a large cohort of patients with MMN. METHODS: We derived the maximum CMAP amplitude (CMAPmax ), an MU number estimate (MUNE), and the largest MU amplitude stimulus current required to elicit 5%, 50%, and 95% of CMAPmax (S5, S50, S95) and relative ranges ([S95 - S5] × 100 / S50) from the scans. These metrics were compared with clinical, laboratory, and NCS results. RESULTS: Forty MMN patients and 24 healthy controls were included in the study. CMAPmax and MUNE were reduced in MMN patients (both P < .001). Largest MU amplitude as a percentage of CMAPmax was increased in MMN patients (P < .001). Disease duration and treatment duration were not associated with MUNE. Relative range was larger in patients with anti-GM1 antibodies than in those without anti-GM1 antibodies (P = .016) and controls (P < .001). The largest MU amplitudes were larger in patients without anti-GM1 antibodies than in patients with anti-GM1 antibodies (P = .037) and controls (P = .044). DISCUSSION: We found that MU loss is common in MMN and accompanied by enlarged MUs. Presence of anti-GM1 antibodies was associated with increased relative range of MU thresholds and reduction in largest MU amplitude. Our findings indicate that CMAP scans complement routine NCS, and may have potential for practical monitoring of treatment efficacy and disease progression.


Assuntos
Polineuropatias , Potenciais de Ação/fisiologia , Estudos de Coortes , Progressão da Doença , Humanos , Condução Nervosa/fisiologia , Polineuropatias/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...