Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 476, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724536

RESUMO

Estimating growing stock is one of the main objectives of forest inventories. It refers to the stem volume of individual trees which is typically derived by models as it cannot be easily measured directly. These models are thus based on measurable tree dimensions and their parameterization depends on the available empirical data. Historically, such data were collected by measurements of tree stem sizes, which is very time- and cost-intensive. Here, we present an exceptionally large dataset with section-wise stem measurements on 40'349 felled individual trees collected on plots of the Experimental Forest Management project. It is a revised and expanded version of previously unpublished data and contains the empirically derived coarse (diameter ≥7 cm) and fine branch volume of 27'297 and 18'980, respectively, individual trees. The data were collected between 1888 and 1974 across Switzerland covering a large topographic gradient and a diverse species range and can thus support estimations and verification of volume functions also outside Switzerland including the derivation of whole tree volume in a consistent manner.


Assuntos
Árvores , Suíça , Caules de Planta/anatomia & histologia , Florestas
2.
Ecol Evol ; 11(17): 12182-12203, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522370

RESUMO

Tree regeneration is a key process for long-term forest dynamics, determining changes in species composition and shaping successional trajectories. While tree regeneration is a highly stochastic process, tree regeneration studies often cover narrow environmental gradients only, focusing on specific forest types or species in distinct regions. Thus, the larger-scale effects of temperature, water availability, and stand structure on tree regeneration are poorly understood.We investigated these effects in respect of tree recruitment (in-growth) along wide environmental gradients using forest inventory data from Flanders (Belgium), northwestern Germany, and Switzerland covering more than 40 tree species. We employed generalized linear mixed models to capture the abundance of tree recruitment in response to basal area, stem density, shade casting ability of a forest stand as well as site-specific degree-day sum (temperature), water balance, and plant-available water holding capacity. We grouped tree species to facilitate comparisons between species with different levels of tolerance to shade and drought.Basal area and shade casting ability of the overstory had generally a negative impact on tree recruitment, but the effects differed between levels of shade tolerance of tree recruitment in all study regions. Recruitment rates of very shade-tolerant species were positively affected by shade casting ability. Stem density and summer warmth (degree-day sum) had similar effects on all tree species and successional strategies. Water-related variables revealed a high degree of uncertainty and did not allow for general conclusions. All variables had similar effects independent of the varying diameter thresholds for tree recruitment in the different data sets.Synthesis: Shade tolerance and stand structure are the main drivers of tree recruitment along wide environmental gradients in temperate forests. Higher temperature generally increases tree recruitment rates, but the role of water relations and drought tolerance remains uncertain for tree recruitment on cross-regional scales.

4.
Sci Data ; 8(1): 220, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404811

RESUMO

Primary forests, defined here as forests where the signs of human impacts, if any, are strongly blurred due to decades without forest management, are scarce in Europe and continue to disappear. Despite these losses, we know little about where these forests occur. Here, we present a comprehensive geodatabase and map of Europe's known primary forests. Our geodatabase harmonizes 48 different, mostly field-based datasets of primary forests, and contains 18,411 individual patches (41.1 Mha) spread across 33 countries. When available, we provide information on each patch (name, location, naturalness, extent and dominant tree species) and the surrounding landscape (biogeographical regions, protection status, potential natural vegetation, current forest extent). Using Landsat satellite-image time series (1985-2018) we checked each patch for possible disturbance events since primary forests were identified, resulting in 94% of patches free of significant disturbances in the last 30 years. Although knowledge gaps remain, ours is the most comprehensive dataset on primary forests in Europe, and will be useful for ecological studies, and conservation planning to safeguard these unique forests.


Assuntos
Conservação dos Recursos Naturais , Florestas , Bases de Dados Factuais , Europa (Continente)
5.
Nat Commun ; 12(1): 3137, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035260

RESUMO

Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.


Assuntos
Biodiversidade , Florestas , Micorrizas/fisiologia , Árvores/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Dispersão Vegetal , Microbiologia do Solo , Árvores/microbiologia
6.
Tree Physiol ; 40(4): 498-510, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32031220

RESUMO

During the growing season, trees allocate photoassimilates to increase their aboveground woody biomass in the stem (ABIstem). This 'carbon allocation' to structural growth is a dynamic process influenced by internal and external (e.g., climatic) drivers. While radial variability in wood formation and its resulting structure have been intensively studied, their variability along tree stems and subsequent impacts on ABIstem remain poorly understood. We collected wood cores from mature trees within a fixed plot in a well-studied temperate Fagus sylvatica L. forest. For a subset of trees, we performed regular interval sampling along the stem to elucidate axial variability in ring width (RW) and wood density (ρ), and the resulting effects on tree- and plot-level ABIstem. Moreover, we measured wood anatomical traits to understand the anatomical basis of ρ and the coupling between changes in RW and ρ during drought. We found no significant axial variability in ρ because an increase in the vessel-to-fiber ratio with smaller RW compensated for vessel tapering towards the apex. By contrast, temporal variability in RW varied significantly along the stem axis, depending on the growing conditions. Drought caused a more severe growth decrease, and wetter summers caused a disproportionate growth increase at the stem base compared with the top. Discarding this axial variability resulted in a significant overestimation of tree-level ABIstem in wetter and cooler summers, but this bias was reduced to ~2% when scaling ABIstem to the plot level. These results suggest that F. sylvatica prioritizes structural carbon sinks close to the canopy when conditions are unfavorable. The different axial variability in RW and ρ thereby indicates some independence of the processes that drive volume growth and wood structure along the stem. This refines our knowledge of carbon allocation dynamics in temperate diffuse-porous species and contributes to reducing uncertainties in determining forest carbon fixation.


Assuntos
Fagus , Biomassa , Florestas , Árvores , Madeira
7.
Glob Chang Biol ; 26(4): 2463-2476, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31968145

RESUMO

The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long-term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960-2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 ± 0.006 Mg C ha-1  year-1  km-1 for P. abies and 0.93 ± 0.010 Mg C ha-1  year-1  km-1 for F. sylvatica). During warm-dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm-dry extremes. Importantly, cold-dry extremes had negative impacts on regional forest NPP comparable to warm-dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.

8.
Ecology ; 100(11): e02845, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31351002

RESUMO

Forests dominated by European beech (Fagus sylvatica L.) are among both the most widespread in Europe and the most intensely exploited globally. One of the largest remnants of unmanaged beech forests in Europe is the Uholka-Shyrokyi Luh forest in Transcarpathia, Ukraine, covering 8,800 ha of primeval forest. In 2000, a permanent forest plot of 10 ha has been established in the Uholka massif. All living and dead trees with a diameter at breast height (DBH) ≥ 60 mm were identified to species, DBH measured, stems tagged and mapped. Since then, the plot has been remeasured in 2005, 2010, and 2015. In total, 4,820 individual trees were measured with 14,116 individual measurements throughout all four inventories. In spring 2018, an Airborne Laser Scan was carried out, covering the Uholka-Shyrokyi Luh forest. This data set allows us to derive a high-resolution digital elevation model (DEM) of the plot area. European beech covers a share of ≈ 95% of the basal area (BA) of all living stems. While BA was relatively stable throughout all inventories (≈ 38 m2 /ha), the number of stems increased considerably between 2010 and 2015 from 290 to 430 stems/ha. Additionally, the proportion of beech stems decreased from 95% in 2010 to 86% in 2015. The continuity of the share of beech on BA and the decrease in number of stems can be traced back to disturbance events, which led to an increase of more light demanding species in the recruitment but did not alter the distribution of BA as these small trees contribute very little to BA. The data set allows for important insights into the development and the spatial and temporal dynamics of primeval beech forests. It can be used to quantify the demographic processes growth, mortality, and recruitment, and to study inter- and intraspecific effects on demographic rates, stand structure, and species composition. No copyright or proprietary restrictions are associated with the use of this data set other than citation of this Data Paper.

9.
Sensors (Basel) ; 19(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970553

RESUMO

Understory vegetation influences several ecosystem services and functions of European beech (Fagus sylvatica L.) forests. Despite this knowledge on the importance of understory vegetation, it is still difficult to measure its three-dimensional characteristics in a quantitative manner. With the recent advancements in terrestrial laser scanning (TLS), we now have the means to analyze detailed spatial patterns of forests. Here, we present a new measure to quantify understory complexity. We tested the approach for different management types, ranging from traditionally and alternatively managed forests and national parks in Germany to primary forests of Eastern Europe and the Ukraine, as well as on an inventory site with more detailed understory reference data. The understory complexity index (UCI) was derived from point clouds from single scans and tested for its relationship with forest management and conventional inventory data. Our results show that advanced tree regeneration is a strong driver of the UCI. Furthermore, the newly developed index successfully measured understory complexity of differently managed beech stands and was able to distinguish scanning positions located on and away from skid-trails in managed stands. The approach enables a deeper understanding of the complexity of understory structures of forests and their drivers and dependents.


Assuntos
Ecossistema , Fagus/fisiologia , Florestas , Árvores/fisiologia , Europa (Continente) , Alemanha , Humanos , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...