Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 146: 105543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081574

RESUMO

Multiple in vitro eye irritation methods have been developed and adopted as OECD health effects test guidelines. However, for predicting the ocular irritation/damage potential of agrochemical formulations there is an applicability domain knowledge gap for most of the methods. To overcome this gap, a retrospective evaluation of 192 agrochemical formulations with in vivo (OECD TG 405) and in vitro (OECD TG 437, 438, and/or 492) data was conducted to determine if the in vitro methods could accurately assign United Nations Globally Harmonized System for Classification and Labelling of Chemicals (GHS) eye irritation hazard classifications. In addition, for each formulation the eye irritation classification was derived from the classification of the contained hazardous ingredients and their respective concentration in the product using the GHS concentration threshold (CT) approach. The results herein suggest that the three in vitro methods and the GHS CT approach were highly predictive of formulations that would not require GHS classification for eye irritation. Given most agrochemical formulations fall into this category, methods that accurately identify non-classified agrochemical formulations could significantly reduce the use of animals for this endpoint.


Assuntos
Agroquímicos , Irritantes , Animais , Agroquímicos/toxicidade , Agroquímicos/química , Estudos Retrospectivos , Alternativas aos Testes com Animais , Olho
2.
Regul Toxicol Pharmacol ; 106: 152-168, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31026541

RESUMO

Mefentrifluconazole (trade name: Revysol®) is an agrochemical active ingredient from the new sub-class of isopropanol-triazole fungicides, with high selective fungicide activity. A full program of toxicity testing conducted according to OECD guidelines has shown mefentrifluconazole (MFZ) to be non-genotoxic and non-carcinogenic. Repeated dose studies in rats, mice and dogs identified the liver as the main target organ. Prenatal developmental toxicity studies in rats and rabbits did not indicate treatment-related embryofetal toxicity or teratogenicity up to the highest dose levels tested. In a two-generation dietary study in rats, the high dose level resulted in reduced food consumption and body weight gain throughout the dosing-period. Mating performance and fertility, estrous cycles, gestation length and pre-and post-natal survival of offspring were essentially unaffected and there was no evidence of masculinization of female pups or feminization of male pups. The screening strategy that led to the selection of MFZ was aimed to identify candidates with both high fungicidal activity and minimal likelihood of adverse side effects thought to arise from aromatase inhibition. The success of the selection strategy has been illustrated for MFZ by the absence in toxicity studies of effects that would indicate an endocrine disrupting potential.


Assuntos
Antifúngicos/efeitos adversos , Antifúngicos/toxicidade , Fluconazol/análogos & derivados , Animais , Peso Corporal/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Feminino , Fluconazol/efeitos adversos , Fluconazol/toxicidade , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Coelhos , Ratos
3.
Regul Toxicol Pharmacol ; 92: 407-419, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29305950

RESUMO

In vivo acute systemic testing is a regulatory requirement for agrochemical formulations. GHS specifies an alternative computational approach (GHS additivity formula) for calculating the acute toxicity of mixtures. We collected acute systemic toxicity data from formulations that contained one of several acutely-toxic active ingredients. The resulting acute data set includes 210 formulations tested for oral toxicity, 128 formulations tested for inhalation toxicity and 31 formulations tested for dermal toxicity. The GHS additivity formula was applied to each of these formulations and compared with the experimental in vivo result. In the acute oral assay, the GHS additivity formula misclassified 110 formulations using the GHS classification criteria (48% accuracy) and 119 formulations using the USEPA classification criteria (43% accuracy). With acute inhalation, the GHS additivity formula misclassified 50 formulations using the GHS classification criteria (61% accuracy) and 34 formulations using the USEPA classification criteria (73% accuracy). For acute dermal toxicity, the GHS additivity formula misclassified 16 formulations using the GHS classification criteria (48% accuracy) and 20 formulations using the USEPA classification criteria (36% accuracy). This data indicates the acute systemic toxicity of many formulations is not the sum of the ingredients' toxicity (additivity); but rather, ingredients in a formulation can interact to result in lower or higher toxicity than predicted by the GHS additivity formula.


Assuntos
Agroquímicos/toxicidade , Administração Cutânea , Administração por Inalação , Administração Oral , Bioensaio/métodos , Química Farmacêutica/métodos , Estados Unidos , United States Environmental Protection Agency
4.
Birth Defects Res B Dev Reprod Toxicol ; 98(3): 208-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23749492

RESUMO

Epoxiconazole (CAS-No. 133855-98-8) was recently shown to cause both a marked depletion of maternal estradiol blood levels and a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (GD 7-18 or 21); estradiol supplementation prevented this epoxiconazole effect in rats (Stinchcombe et al., 2013), indicating that epoxiconazole-mediated estradiol depletion is a critical key event for induction of late fetal resorptions in rats. For further elucidation of the mode of action, the placentas from these modified prenatal developmental toxicity experiments with 23 and 50 mg/kg bw/d epoxiconazole were subjected to a detailed histopathological examination. This revealed dose-dependent placental degeneration characterized by cystic dilation of maternal sinuses in the labyrinth, leading to rupture of the interhemal membrane. Concomitant degeneration occurred in the trophospongium. Both placentas supporting live fetuses and late fetal resorptions were affected; the highest degree of severity was observed in placentas with late resorptions. Placental degeneration correlated with a severe decline in maternal serum estradiol concentration. Supplementation with 0.5 and 1.0 µg of the synthetic estrogen estradiol cyclopentylpropionate per day reduced the severity of the degeneration in placentas with live fetuses. The present study demonstrates that both the placental degeneration and the increased incidence of late fetal resorptions are due to decreased levels of estrogen, since estrogen supplementation ameliorates the former and abolishes the latter.


Assuntos
Suplementos Nutricionais , Compostos de Epóxi/toxicidade , Estradiol/farmacologia , Placenta/efeitos dos fármacos , Placenta/patologia , Triazóis/toxicidade , Animais , Implantação do Embrião/efeitos dos fármacos , Estradiol/sangue , Estrogênios/metabolismo , Feminino , Feto/efeitos dos fármacos , Feto/patologia , Idade Gestacional , Gravidez , Ratos , Ratos Wistar
5.
Birth Defects Res B Dev Reprod Toxicol ; 98(3): 230-46, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23630118

RESUMO

Epoxiconazole, a triazole-based fungicide, was tested in toxicokinetic, prenatal and pre-postnatal toxicity studies in guinea pigs, following oral (gavage) administration at several dose levels (high dose: 90 mg/kg body weight per day). Maternal toxicity was evidenced by slightly increased abortion rates and by histopathological changes in adrenal glands, suggesting maternal stress. No compound-related increase in the incidence of malformations or variations was observed in the prenatal study. In the pre-postnatal study, epoxiconazole did not adversely affect gestation length, parturition, or postnatal growth and development. Administration of epoxiconazole did not alter circulating estradiol levels. Histopathological examination of the placentas did not reveal compound-related effects. The results in guinea pigs are strikingly different to those observed in pregnant rats, in which maternal estrogen depletion, pathological alteration of placentas, increased gestation length, late fetal death, and dystocia were observed after administration of epoxiconazole. In the studies reported here, analysis of maternal plasma concentrations and metabolism after administration of radiolabeled epoxiconazole demonstrated that the different results in rats and guinea pigs were not due to different exposures of the animals. A comprehensive comparison of hormonal regulation of pregnancy and birth in murid rodents and primates indicates that the effects on pregnancy and parturition observed in rats are not applicable to humans. In contrast, the pregnant guinea pig shares many similarities to pregnant humans regarding hormonal regulation and is therefore considered to be a suitable species for extrapolation of related effects to humans.


Assuntos
Compostos de Epóxi/toxicidade , Crescimento e Desenvolvimento/efeitos dos fármacos , Triazóis/toxicidade , Animais , Radioisótopos de Carbono/sangue , Compostos de Epóxi/química , Feminino , Feto/efeitos dos fármacos , Feto/patologia , Cobaias/sangue , Humanos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Especificidade da Espécie , Triazóis/química
6.
Birth Defects Res B Dev Reprod Toxicol ; 98(3): 247-59, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23720304

RESUMO

Epoxiconazole (EPX; CAS-No. 133855-98-8) is a triazole class-active substance of plant protection products. At a dose level of 50 mg/kg bw/day, it causes a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (gestation day [GD] 7-18 or 21), as reported previously (Taxvig et al., 2007, 2008) and confirmed in these studies. Late fetal resorptions occurred in the presence of significant maternal toxicity such as clear reduction of corrected body weight gain, signs of anemia, and, critically, a marked reduction of maternal estradiol plasma levels. Furthermore, estradiol supplementation at dose levels of 0.5 or 1.0 µg/animal/day of estradiol cyclopentylpropionate abolished the EPX-mediated late fetal resorptions. No increased incidences of external malformations were found in rats cotreated with 50 mg/kg bw/day EPX and estradiol cyclopentylpropionate, indicating that the occurrence of malformations was not masked by fetal mortality under the study conditions. Overall, the study data indicate that fetal mortality observed in rat studies with EPX is not the result of direct fetal toxicity but occurs indirectly via depletion of maternal estradiol levels. The clarification of the human relevance of the estrogen-related mechanism behind EPX-mediated late fetal resorptions in rats warrants further studies. In particular, this should involve investigation of the placenta (Rey Moreno et al., 2013), since it is the materno-fetal interface and crucial for fetal maintenance. The human relevance is best addressed in a species which is closer to humans with reference to placentation and hormonal regulation of pregnancy, such as the guinea pig (Schneider et al., 2013).


Assuntos
Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/toxicidade , Estrogênios/administração & dosagem , Estrogênios/farmacologia , Triazóis/administração & dosagem , Triazóis/toxicidade , Animais , Feminino , Feto/anormalidades , Feto/efeitos dos fármacos , Feto/patologia , Hormônios/sangue , Humanos , Masculino , Gravidez , Ratos , Ratos Wistar , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...