Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroanat ; 16: 1048261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506870

RESUMO

The allometric scaling of the brain size and neuron number across species has been extensively studied in recent years. With the exception of primates, parrots, and songbirds, larger brains have more neurons but relatively lower neuronal densities than smaller brains. Conversely, when considering within-population variability, it has been shown that mice with larger brains do not necessarily have more neurons but rather more neurons in the brain reflect higher neuronal density. To what extent this intraspecific allometric scaling pattern of the brain applies to individuals from other species remains to be explored. Here, we investigate the allometric relationships among the sizes of the body, brain, telencephalon, cerebellum, and optic tectum, and the numbers of neurons and non-neuronal cells of the telencephalon, cerebellum, and optic tectum across 66 individuals originated from an intercross between wild and domestic chickens. Our intercross of chickens generates a population with high variation in brain size, making it an excellent model to determine the allometric scaling of the brain within population. Our results show that larger chickens have larger brains with moderately more neurons and non-neuronal cells. Yet, absolute number of neurons and non-neuronal cells correlated strongly and positively with the density of neurons and non-neuronal cells, respectively. As previously shown in mice, this scaling pattern is in stark contrast with what has been found across different species. Our findings suggest that neuronal scaling rules across species are not a simple extension of the neuronal scaling rules that apply within a species, with important implications for the evolutionary developmental origins of brain diversity.

2.
Front Physiol ; 13: 826178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250629

RESUMO

The cerebellum has a highly conserved neural structure across species but varies widely in size. The wide variation in cerebellar size (both absolute and in proportion to the rest of the brain) among species and populations suggests that functional specialization is linked to its size. There is increasing recognition that the cerebellum contributes to cognitive processing and emotional control in addition to its role in motor coordination. However, to what extent cerebellum size reflects variation in these behavioral processes within species remains largely unknown. By using a unique intercross chicken population based on parental lines with high divergence in cerebellum size, we compared the behavior of individuals repeatedly exposed to the same fear test (emergence test) early in life and after sexual maturity (eight trials per age group) with proportional cerebellum size and cerebellum neural density. While proportional cerebellum size did not predict the initial fear response of the individuals (trial 1), it did increasingly predict adult individuals response as the trials progressed. Our results suggest that proportional cerebellum size does not necessarily predict an individual's fear response, but rather the habituation process to a fearful stimulus. Cerebellum neuronal density did not predict fear behavior in the individuals which suggests that these effects do not result from changes in neuronal density but due to other variables linked to proportional cerebellum size which might underlie fear habituation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...