Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762178

RESUMO

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete but abnormally activated in a wide variety of tumors. The CTA, Testis-specific serine kinase 6 (TSSK6), is essential for male fertility in mice. The functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse-free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage-independent growth, invasion, and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin-positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Invasividade Neoplásica , Linhagem Celular Tumoral , Masculino , Paxilina/metabolismo , Paxilina/genética , Carcinogênese/genética , Tensinas/metabolismo , Tensinas/genética , Adesões Focais/metabolismo , Adesões Focais/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255853

RESUMO

Activity-regulated cytoskeleton-associated protein (Arc) plays essential roles in diverse forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity. In addition, it assembles into virus-like particles that may deliver mRNAs and/or other cargo between neurons and neighboring cells. Considering this broad range of activities, it is not surprising that Arc is subject to regulation by multiple types of post-translational modification, including phosphorylation, palmitoylation, SUMOylation, ubiquitylation, and acetylation. Here we explore the potential regulatory role of Arc phosphorylation by protein kinase C (PKC), which occurs on serines 84 and 90 within an α-helical segment in the N-terminal domain. To mimic the effect of PKC phosphorylation, we mutated the two serines to negatively charged glutamic acid. A consequence of introducing these phosphomimetic mutations is the almost complete inhibition of Arc palmitoylation, which occurs on nearby cysteines and contributes to synaptic weakening. The mutations also inhibit the binding of nucleic acids and destabilize high-order Arc oligomers. Thus, PKC phosphorylation of Arc may limit the full expression of LTD and may suppress the interneuronal transport of mRNAs.


Assuntos
Lipoilação , Ácidos Nucleicos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteína Quinase C/genética
3.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38260312

RESUMO

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete, but abnormally activated in a wide variety of tumors. The CTA, Testis specific serine kinase 6 (TSSK6), is essential for male fertility in mice. Functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage independent growth, invasion and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.

4.
Biochemistry ; 62(9): 1433-1442, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37021821

RESUMO

The most frequent ERK2 (MAPK1) mutation in cancers, E322K, lies in the common docking (CD) site, which binds short motifs made up of basic and hydrophobic residues present in the activators MEK1 (MAP2K1) and MEK2 (MAP2K2), in dual specificity phosphatases (DUSPs) that inactivate the kinases, and in many of their substrates. Also, part of the CD site, but mutated less often in cancers, is the preceding aspartate (D321N). These mutants were categorized as gain of function in a sensitized melanoma system. In Drosophila developmental assays, we found that the aspartate but not the glutamate mutant caused gain-of-function phenotypes. Here, we catalogued additional properties of these mutants to accrue greater insight into their functions. A modest increase in nuclear retention of E322K was noted. Binding of ERK2 E322K and D321N to a small group of substrates and regulatory proteins was similar, in spite of differences in CD site integrity. Interactions with a second docking site, the F site, which should be more accessible in E322K, were modestly reduced rather than increased. The crystal structure of ERK2 E322K also indicated a disturbed dimer interface, and reduced dimerization was detected by a two-hybrid test; yet, it was detected in dimers in EGF-treated cells, although to a lesser extent than D321N or wt ERK2. These findings indicate a range of small differences in behaviors that may contribute to increased function of E322K in certain cancers.


Assuntos
Ácido Aspártico , Proteínas de Drosophila , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno , Animais , Drosophila , Sistema de Sinalização das MAP Quinases/fisiologia , Mutação , Fosforilação , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteínas de Drosophila/genética , Multimerização Proteica
5.
Proc Natl Acad Sci U S A ; 116(31): 15514-15523, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31296562

RESUMO

The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Mutação/genética , Animais , Animais Geneticamente Modificados , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Ativação Enzimática , Estabilidade Enzimática , MAP Quinases Reguladas por Sinal Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(15): 3840-3845, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581290

RESUMO

The with-no-lysine (K) (WNK) signaling pathway to STE20/SPS1-related proline- and alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinase is an important mediator of cell volume and ion transport. SPAK and OSR1 associate with upstream kinases WNK 1-4, substrates, and other proteins through their C-terminal domains which interact with linear R-F-x-V/I sequence motifs. In this study we find that SPAK and OSR1 also interact with similar affinity with a motif variant, R-x-F-x-V/I. Eight of 16 human inward rectifier K+ channels have an R-x-F-x-V motif. We demonstrate that two of these channels, Kir2.1 and Kir2.3, are activated by OSR1, while Kir4.1, which does not contain the motif, is not sensitive to changes in OSR1 or WNK activity. Mutation of the motif prevents activation of Kir2.3 by OSR1. Both siRNA knockdown of OSR1 and chemical inhibition of WNK activity disrupt NaCl-induced plasma membrane localization of Kir2.3. Our results suggest a mechanism by which WNK-OSR1 enhance Kir2.1 and Kir2.3 channel activity by increasing their plasma membrane localization. Regulation of members of the inward rectifier K+ channel family adds functional and mechanistic insight into the physiological impact of the WNK pathway.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Família Multigênica , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência , Transdução de Sinais
7.
J Vis Exp ; (123)2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28605363

RESUMO

Protein kinases are able to govern large-scale cellular changes in response to complex arrays of stimuli, and much effort has been directed at uncovering allosteric details of their regulation. Kinases comprise signaling networks whose defects are often hallmarks of multiple forms of cancer and related diseases, making an assay platform amenable to manipulation of upstream regulatory factors and validation of reaction requirements critical in the search for improved therapeutics. Here, we describe a basic kinase assay that can be easily adapted to suit specific experimental questions including but not limited to testing the effects of biochemical and pharmacological agents, genetic manipulations such as mutation and deletion, as well as cell culture conditions and treatments to probe cell signaling mechanisms. This assay utilizes radiolabeled [γ-32P] ATP, which allows for quantitative comparisons and clear visualization of results, and can be modified for use with immunoprecipitated or recombinant kinase, specific or typified substrates, all over a wide range of reaction conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Quinases/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Humanos , Radioisótopos de Fósforo/análise , Fosforilação , Compostos Radiofarmacêuticos/análise , Transdução de Sinais
8.
Autophagy ; 13(5): 969-970, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28282258

RESUMO

Autophagy is a cellular degradation pathway that is essential to maintain cellular physiology, and deregulation of autophagy leads to multiple diseases in humans. In a recent study, we discovered that the protein kinase WNK1 (WNK lysine deficient protein kinase 1) is an inhibitor of autophagy. The loss of WNK1 increases both basal and starvation-induced autophagy. In addition, the depletion of WNK1 increases the activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which is required to induce autophagy. Moreover, the loss of WNK1 increases the expression of ULK1 (unc-51 like kinase 1), which is upstream of the PtdIns3K complex. It also increases the pro-autophagic phosphorylation of ULK1 at Ser555 and the activation of AMPK (AMP-activated protein kinase), which is responsible for that phosphorylation. The inhibition of AMPK by compound C decreases the magnitude of autophagy induction following WNK1 loss; however, it does not prevent autophagy induction. We found that the UVRAG (UV radiation resistance associated gene), which is a component of the PtdIns3K, binds to the N-terminal region of WNK1. Moreover, WNK1 partially colocalizes with UVRAG and this colocalization decreases when autophagy is stimulated in cells. The loss of WNK1 also alters the cellular distribution of UVRAG. The depletion of the downstream target of WNK1, OXSR1/OSR1 (oxidative-stress responsive 1) has no effect on autophagy, whereas the depletion of its relative STK39/SPAK (serine/threonine kinase 39) induces autophagy under nutrient-rich and starved conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Transdução de Sinais/fisiologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Animais , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(50): 14342-14347, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911840

RESUMO

The with-no-lysine (K) (WNK) kinases are an atypical family of protein kinases that regulate ion transport across cell membranes. Mutations that result in their overexpression cause hypertension-related disorders in humans. Of the four mammalian WNKs, only WNK1 is expressed throughout the body. We report that WNK1 inhibits autophagy, an intracellular degradation pathway implicated in several human diseases. Using small-interfering RNA-mediated WNK1 knockdown, we show autophagosome formation and autophagic flux are accelerated. In cells with reduced WNK1, basal and starvation-induced autophagy is increased. We also show that depletion of WNK1 stimulates focal class III phosphatidylinositol 3-kinase complex (PI3KC3) activity, which is required to induce autophagy. Depletion of WNK1 increases the expression of the PI3KC3 upstream regulator unc-51-like kinase 1 (ULK1), its phosphorylation, and activation of the kinase upstream of ULK1, the AMP-activated protein kinase. In addition, we show that the N-terminal region of WNK1 binds to the UV radiation resistance-associated gene (UVRAG) in vitro and WNK1 partially colocalizes with UVRAG, a component of a PI3KC3 complex. This colocalization decreases upon starvation of cells. Depletion of the SPS/STE20-related proline-alanine-rich kinase, a WNK1-activated enzyme, also induces autophagy in nutrient-replete or -starved conditions, but depletion of the related kinase and WNK1 substrate, oxidative stress responsive 1, does not. These results indicate that WNK1 inhibits autophagy by multiple mechanisms.


Assuntos
Autofagia/fisiologia , Proteína Quinase 1 Deficiente de Lisina WNK/fisiologia , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linhagem Celular , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/antagonistas & inibidores , Proteína Quinase 1 Deficiente de Lisina WNK/genética
10.
Biochemistry ; 55(12): 1909-17, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26950759

RESUMO

The mitogen-activated protein kinase ERK2 is able to elicit a wide range of context-specific responses to distinct stimuli, but the mechanisms underlying this versatility remain in question. Some cellular functions of ERK2 are mediated through regulation of gene expression. In addition to phosphorylating numerous transcriptional regulators, ERK2 is known to associate with chromatin and has been shown to bind oligonucleotides directly. ERK2 is activated by the upstream kinases MEK1/2, which phosphorylate both tyrosine 185 and threonine 183. ERK2 requires phosphorylation on both sites to be fully active. Some additional ERK2 phosphorylation sites have also been reported, including threonine 188. It has been suggested that this phospho form has distinct properties. We detected some ERK2 phosphorylated on T188 in bacterial preparations of ERK2 by mass spectrometry and further demonstrate that phosphomimetic substitution of this ERK2 residue impairs its kinase activity toward well-defined substrates and also affects its DNA binding. We used electrophoretic mobility shift assays with oligonucleotides derived from the insulin gene promoter and other regions to examine effects of phosphorylation and mutations on the binding of ERK2 to DNA. We show that ERK2 can bind oligonucleotides directly. Phosphorylation and mutations alter DNA binding and support the idea that signaling functions may be influenced through an alternate phosphorylation site.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Animais , Proteína Quinase 1 Ativada por Mitógeno/química , Mutação/fisiologia , Oligonucleotídeos/química , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos
11.
Proc Natl Acad Sci U S A ; 110(47): 18826-31, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191005

RESUMO

The Ste20 family protein kinases oxidative stress-responsive 1 (OSR1) and the STE20/SPS1-related proline-, alanine-rich kinase directly regulate the solute carrier 12 family of cation-chloride cotransporters and thereby modulate a range of processes including cell volume homeostasis, blood pressure, hearing, and kidney function. OSR1 and STE20/SPS1-related proline-, alanine-rich kinase are activated by with no lysine [K] protein kinases that phosphorylate the essential activation loop regulatory site on these kinases. We found that inhibition of phosphoinositide 3-kinase (PI3K) reduced OSR1 activation by osmotic stress. Inhibition of the PI3K target pathway, the mammalian target of rapamycin complex 2 (mTORC2), by depletion of Sin1, one of its components, decreased activation of OSR1 by sorbitol and reduced activity of the OSR1 substrate, the sodium, potassium, two chloride cotransporter, in HeLa cells. OSR1 activity was also reduced with a pharmacological inhibitor of mTOR. mTORC2 phosphorylated OSR1 on S339 in vitro, and mutation of this residue eliminated OSR1 phosphorylation by mTORC2. Thus, we identify a previously unrecognized connection of the PI3K pathway through mTORC2 to a Ste20 protein kinase and ion homeostasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pressão Osmótica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Análise de Variância , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Alvo Mecanístico do Complexo 2 de Rapamicina , Antígenos de Histocompatibilidade Menor , Complexos Multiproteicos/metabolismo , Oligonucleotídeos/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , RNA Interferente Pequeno/genética , Sorbitol , Serina-Treonina Quinases TOR/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
12.
Proc Natl Acad Sci U S A ; 109(42): 16841-6, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027929

RESUMO

We report an action of the protein kinase WNK3 on the neuronal mRNA splicing factor Fox-1. Fox-1 splices mRNAs encoding proteins important in synaptic transmission and membrane excitation. WNK3, implicated in the control of neuronal excitability through actions on ion transport, binds Fox-1 and inhibits its splicing activity in a kinase activity-dependent manner. Phosphorylation of Fox-1 by WNK3 does not change its RNA binding capacity; instead, WNK3 increases the cytoplasmic localization of Fox-1, thereby suppressing Fox-1-dependent splicing. These findings demonstrate a role of WNK3 in RNA processing. Considering the implication of WNK3 and Fox-1 in disorders of neuronal development such as autism, WNK3 may offer a target for treatment of Fox-1-induced disease.


Assuntos
Encéfalo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Primers do DNA/genética , Deutério , Ensaio de Desvio de Mobilidade Eletroforética , Biblioteca Gênica , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Radioisótopos de Fósforo , Fatores de Processamento de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
13.
J Biol Chem ; 287(45): 37868-79, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22989884

RESUMO

Two of the four WNK (with no lysine (K)) protein kinases are associated with a heritable form of ion imbalance culminating in hypertension. WNK1 affects ion transport in part through activation of the closely related Ste20 family protein kinases oxidative stress-responsive 1 (OSR1) and STE20/SPS1-related proline-, alanine-rich kinase (SPAK). Once activated by WNK1, OSR1 and SPAK phosphorylate and stimulate the sodium, potassium, two chloride co-transporters, NKCC1 and NKCC2, and also affect other related ion co-transporters. We find that WNK1 and OSR1 co-localize on cytoplasmic puncta in HeLa and other cell types. We show that the C-terminal region of WNK1 including a coiled coil is sufficient to localize the fragment in a manner similar to the full-length protein, but some other fragments lacking this region are mislocalized. Photobleaching experiments indicate that both hypertonic and hypotonic conditions reduce the mobility of GFP-WNK1 in cells. The four WNK family members can phosphorylate the activation loop of OSR1 to increase its activity with similar kinetic constants. C-terminal fragments of WNK1 that contain three RFXV interaction motifs can bind OSR1, block activation of OSR1 by sorbitol, and prevent the OSR1-induced enhancement of ion co-transporter activity in cells, further supporting the conclusion that association with WNK1 is required for OSR1 activation and function at least in some contexts. C-terminal WNK1 fragments can be phosphorylated by OSR1, suggesting that OSR1 catalyzes feedback phosphorylation of WNK1.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Citoplasma/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Soluções Hipertônicas/farmacologia , Soluções Hipotônicas/farmacologia , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia de Fluorescência , Antígenos de Histocompatibilidade Menor , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Ratos , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto , Membro 2 da Família 12 de Carreador de Soluto , Proteína Quinase 1 Deficiente de Lisina WNK
14.
J Biol Chem ; 285(33): 25161-7, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20525693

RESUMO

The four WNK (with no lysine (K)) protein kinases affect ion balance and contain an unusual protein kinase domain due to the unique placement of the active site lysine. Mutations in two WNKs cause a heritable form of ion imbalance culminating in hypertension. WNK1 activates the serum- and glucocorticoid-induced protein kinase SGK1; the mechanism is noncatalytic. SGK1 increases membrane expression of the epithelial sodium channel (ENaC) and sodium reabsorption via phosphorylation and sequestering of the E3 ubiquitin ligase neural precursor cell expressed, developmentally down-regulated 4-2 (Nedd4-2), which otherwise promotes ENaC endocytosis. Questions remain about the intrinsic abilities of WNK family members to regulate this pathway. We find that expression of the N termini of all four WNKs results in modest to strong activation of SGK1. In reconstitution experiments in the same cell line all four WNKs also increase sodium current blocked by the ENaC inhibitor amiloride. The N termini of the WNKs also have the capacity to interact with SGK1. More detailed analysis of activation by WNK4 suggests mechanisms in common with WNK1. Further evidence for the importance of WNK1 in this process comes from the ability of Nedd4-2 to bind to WNK1 and the finding that endogenous SGK1 has reduced activity if WNK1 is knocked down by small interfering RNA.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Canais Epiteliais de Sódio/genética , Células HeLa , Humanos , Proteínas Imediatamente Precoces/genética , Immunoblotting , Imunoprecipitação , Camundongos , Antígenos de Histocompatibilidade Menor , Ubiquitina-Proteína Ligases Nedd4 , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Ratos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
15.
J Biol Chem ; 284(6): 3453-60, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19068477

RESUMO

SGK1 (serum- and glucocorticoid-induced kinase 1) is a member of the AGC branch of the protein kinase family. Among well described functions of SGK1 is the regulation of epithelial transport through phosphorylation of the ubiquitin protein ligase Nedd4-2 (neuronal precursor cell expressed developmentally down-regulated 4-2). The activation of SGK1 has been widely accepted to be dependent on the phosphorylation of Thr256 in the activation loop and Ser422 in the hydrophobic motif near the C terminus. Here, we report the identification of two additional phosphorylation sites, Ser397 and Ser401. Both are required for maximum SGK1 activity induced by extracellular agents or by coexpression with other protein kinases, with the largest loss of activity from mutation of Ser397. Coexpression with active Akt1 increased the phosphorylation of Ser397 and thereby SGK1 kinase activity. SGK1 activation was further augmented by coexpression with the protein kinase WNK1 (with no lysine kinase 1). These findings reveal further complexity underlying the regulation of SGK1 activity.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Motivos de Aminoácidos/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Ativação Enzimática/fisiologia , Células HeLa , Humanos , Proteínas Imediatamente Precoces/genética , Peptídeos e Proteínas de Sinalização Intracelular , Antígenos de Histocompatibilidade Menor , Mutação , Ubiquitina-Proteína Ligases Nedd4 , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
16.
Cell Res ; 18(4): 436-42, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18347614

RESUMO

MAP kinases transduce signals that are involved in a multitude of cellular pathways and functions in response to a variety of ligands and cell stimuli. Aberrant or inappropriate functions of MAPKs have now been identified in diseases ranging from cancer to inflammatory disease to obesity and diabetes. In many cell types, the MAPKs ERK1/2 are linked to cell proliferation. ERK1/2 are thought to play a role in some cancers, because mutations in Ras and B-Raf, which can activate the ERK1/2 cascade, are found in many human tumors. Abnormal ERK1/2 signaling has also been found in polycystic kidney disease, and serious developmental disorders such as cardio-facio-cutaneous syndrome arise from mutations in components of the ERK1/2 cascade. ERK1/2 are essential in well-differentiated cells and have been linked to long-term potentiation in neurons and in maintenance of epithelial polarity. Additionally, ERK1/2 are important for insulin gene transcription in pancreatic beta cells, which produce insulin in response to increases in circulating glucose to permit efficient glucose utilization and storage in the organism. Nutrients and hormones that induce or repress insulin secretion activate and/or inhibit ERK1/2 in a manner that reflects the secretory demand on beta cells. Disturbances in this and other regulatory pathways may result in the contribution of ERK1/2 to the etiology of certain human disorders.


Assuntos
Doença , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Diabetes Mellitus/enzimologia , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias/enzimologia , Doenças Renais Policísticas/enzimologia
17.
J Physiol ; 584(Pt 1): 333-45, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17673510

RESUMO

SLC26A9 is a member of the SLC26 family of anion transporters, which is expressed at high levels in airway and gastric surface epithelial cells. The transport properties and regulation of SLC26A9, and thus its physiological function, are not known. Here we report that SLC26A9 is a highly selective Cl(-) channel with minimal OH(-)/HCO(3)(-) permeability that is regulated by the WNK kinases. Expression in Xenopus oocytes and simultaneous measurement of membrane potential or current, intracellular pH (pH(i)) and intracellular Cl(-) (Cl(-)(i)) revealed that expression of SLC26A9 resulted in a large Cl(-) current. SLC26A9 displays a selectivity sequence of I(-) > Br(-) > NO(3)(-) > Cl(-) > Glu(-), but it conducts Br(-) > Cl(-) > I(-) > NO(3)(-) > Glu(-), with NO(3)(-) and I(-) inhibiting the Cl(-) conductance. Similarly, expression of SLC26A9 in HEK cells resulted in a large Cl(-) current. Although detectable, OH(-) and HCO(3)(-) fluxes in oocytes expressing SLC26A9 were very small. Moreover, HCO(3)(-) had no discernable effect on the Cl(-) current, the reversal potential in the presence or absence of Cl(-)(o) and, importantly, HCO(3)(-) had no effect on Cl(-) fluxes. These findings indicate that SLC26A9 is a Cl(-) channel with minimal OH(-)/HCO(3)(-) permeability. Co-expression of SLC26A9 with the WNK kinases WNK1, WNK3 or WNK4 inhibited SLC26A9 activity, and the inhibition was independent of WNK kinase activity. Immunolocalization in oocytes and cell surface biotinylation in HEK cells indicated that the WNK-mediated inhibition of SLC26A9 activity is caused by reduced SLC26A9 surface expression. Expression of SLC26A9 in the airway and the response of the WNKs to homeostatic stress raise the possibility that SLC26A9 serves to mediate the response of the airway to stress.


Assuntos
Antiporters/metabolismo , Cloretos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Bicarbonatos/metabolismo , Linhagem Celular , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Estresse Fisiológico/metabolismo , Transportadores de Sulfato , Xenopus
18.
J Biol Chem ; 282(25): 17985-17996, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17392271

RESUMO

WNKs (with no lysine (K)), unique serine/threonine protein kinases, have been best studied in the context of cell volume regulation and ion homeostasis. Here we describe a biological link between WNKs and transforming growth factor (TGF) beta-Smad signaling. Both WNK1 and WNK4 directly bind to and phosphorylate Smad2. Knockdown of WNK1 in HeLa cells using small interfering RNA reduces Smad2 protein expression; this decrease is at least partially due to down-regulation of Smad2 transcription. In contrast, phosphorylated Smad2 significantly accumulated in the nucleus as a consequence of depletion of WNK1, resulting in Smad-mediated transcriptional responses. In addition, TGFbeta-induced target gene transcripts were increased in WNK1 small interfering RNA cells. These findings suggest WNK1 as a dual modulator of TGFbeta-Smad signaling pathways.


Assuntos
Fibroblastos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Antígenos de Histocompatibilidade Menor , Modelos Biológicos , Fosforilação , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteína Quinase 1 Deficiente de Lisina WNK
19.
J Biol Chem ; 280(40): 34218-23, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16081417

RESUMO

WNK1 (with no lysine (K) 1) is a protein-serine/threonine kinase with a unique catalytic site organization. Deletions in the first intron of the WNK1 gene were found in a group of hypertensive patients with pseudohypoaldosteronism type II. No changes in coding sequence of WNK1 were found, but its expression was increased severalfold. We have been investigating actions of WNK1 and have found that WNK1 activates the serum- and glucocorticoid-induced protein kinase SGK1, which impacts membrane expression of the epithelial sodium channel. Here we explore the role of WNK1 in SGK1 regulation. Activation of SGK1 by WNK1 is blocked by phosphatidylinositol 3-kinase inhibitors. Neither the catalytic activity nor the kinase domain of WNK1 is required; rather the N-terminal 220 residues of WNK1 are necessary and sufficient to activate SGK1. Phosphorylation of WNK1 on Thr-58 contributes to SGK1 activation. Finally, we show that WNK1 is required for the activation of SGK1 by insulin-like growth factor 1.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Canais de Sódio/fisiologia , Animais , Domínio Catalítico , Linhagem Celular , Análise Mutacional de DNA , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , Canais Epiteliais de Sódio , Hipertensão/complicações , Fator de Crescimento Insulin-Like I/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Íntrons , Rim/citologia , Camundongos , Antígenos de Histocompatibilidade Menor , Mutagênese Sítio-Dirigida , Oócitos , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Interferência de RNA , Proteína Quinase 1 Deficiente de Lisina WNK , Xenopus laevis
20.
Proc Natl Acad Sci U S A ; 102(29): 10315-20, 2005 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-16006511

RESUMO

WNK (with no lysine [K]) kinases are serine-threonine protein kinases with an atypical placement of the catalytic lysine. Intronic deletions increase the expression of WNK1 in humans and cause pseudohypoaldosteronism type II, a form of hypertension. WNKs have been linked to ion carriers, but the underlying regulatory mechanisms are unknown. Here, we report a mechanism for the control of ion permeability by WNK1. We show that WNK1 activates the serum- and glucocorticoid-inducible protein kinase SGK1, leading to activation of the epithelial sodium channel. Increased channel activity induced by WNK1 depends on SGK1 and the E3 ubiquitin ligase Nedd4-2. This finding provides compelling evidence that this molecular mechanism contributes to the pathogenesis of hypertension in pseudohypoaldosteronism type II caused by WNK1 and, possibly, in other forms of hypertension.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/fisiopatologia , Canais de Sódio/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Complexos Endossomais de Distribuição Requeridos para Transporte , Ativação Enzimática/fisiologia , Canais Epiteliais de Sódio , Humanos , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Antígenos de Histocompatibilidade Menor , Ubiquitina-Proteína Ligases Nedd4 , Técnicas de Patch-Clamp , Pseudo-Hipoaldosteronismo/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...