Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Commun Biol ; 7(1): 271, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443439

RESUMO

Physical exercise studies are generally underrepresented in young adulthood. Seventeen subjects were randomized into an intervention group (24.2 ± 3.9 years; 3 trainings/week) and 10 subjects into a passive control group (23.7 ± 4.2 years), over a duration of 6 months. Every two months, performance diagnostics, computerized spatial memory tests, and 3 Tesla magnetic resonance imaging were conducted. Here we find that the intervention group, compared to controls, showed increased cardiorespiratory fitness, spatial memory performance and subregional hippocampal volumes over time. Time-by-condition interactions occurred in right cornu ammonis 4 body and (trend only) dentate gyrus, left hippocampal tail and left subiculum. Increases in spatial memory performance correlated with hippocampal body volume changes and, subregionally, with left subicular volume changes. In conclusion, findings support earlier reports of exercise-induced subregional hippocampal volume changes. Such exercise-related plasticity may not only be of interest for young adults with clinical disorders of hippocampal function, but also for sedentary normal cohorts.


Assuntos
Composição Corporal , Memória Espacial , Adulto Jovem , Humanos , Adulto , Cognição , Exercício Físico , Hipocampo/diagnóstico por imagem
2.
Nat Methods ; 20(12): 2048-2057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012321

RESUMO

To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Cabeça , Neuroimagem , Razão Sinal-Ruído
3.
Healthcare (Basel) ; 11(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36900693

RESUMO

Physical activity (PA) plays an important role in affect processing. Studies describe the orbitofrontal cortex (OFC) as a major hub for emotion processing and the pathophysiology of affective disorders. Subregions of the OFC show diverse functional connectivity (FC) topographies, but the effect of chronic PA on subregional OFC FC still lacks scientific understanding. Therefore, we aimed at investigating the effects of regular PA on the FC topographies of OFC subregions in healthy individuals within a longitudinal randomized controlled exercise study. Participants (age: 18-35 years) were randomly assigned to either an intervention group (IG; N = 18) or a control group (CG; N = 10). Fitness assessments, mood questionnaires, and resting state functional magnetic resonance imaging (rsfMRI) were performed four times over the duration of 6 months. Using a detailed parcellation of the OFC, we created subregional FC topography maps at each time point and applied a linear mixed model to assess the effects of regular PA. The posterior-lateral right OFC showed a group and time interaction, revealing decreased FC with the left dorsolateral prefrontal cortex in the IG, while FC in the CG increased. Group and time interaction in the anterior-lateral right OFC with the right middle frontal gyrus was driven by increased FC in the IG. The posterior-lateral left OFC showed a group and time interaction based on differential change in FC to the left postcentral gyrus and the right occipital gyrus. This study emphasized regionally distinctive FC changes induced by PA within the lateral OFC territory, while providing aspects for further research.

4.
Magn Reson Med ; 88(6): 2564-2572, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35942989

RESUMO

PURPOSE: We present a time-efficient water-selective, parallel transmit RF excitation pulse design for ultra-high field applications. METHODS: The proposed pulse design method achieves flip angle homogenization at ultra-high fields by employing spatially nonselective k T $$ {\mathrm{k}}_T $$ -points pulses. In order to introduce water-selection, the concept of binomial pulses is applied. Due to the composite nature of k T $$ {\mathrm{k}}_T $$ -points, the pulse can be split into multiple binomial subpulse blocks shorter than half the precession period of fat, that are played out successively. Additional fat precession turns, that would otherwise impair the spectral response, can thus be avoided. Bloch simulations of the proposed interleaved binomial k T $$ {\mathrm{k}}_T $$ -points pulses were carried out and compared in terms of duration, homogeneity, fat suppression and pulse energy. For validation, in vivo MP-RAGE and 3D-EPI data were acquired. RESULTS: Simulation results show that interleaved binomial k T $$ {\mathrm{k}}_T $$ -points pulses achieve shorter total pulse durations, improved flip angle homogeneity and more robust fat suppression compared to available methods. Interleaved binomial k T $$ {\mathrm{k}}_T $$ -points can be customized by changing the number of k T $$ {\mathrm{k}}_T $$ -points, the subpulse duration and the order of the binomial pulse. Using shorter subpulses, the number of k T $$ {\mathrm{k}}_T $$ -points can be increased and hence better homogeneity is achieved, while still maintaining short total pulse durations. Flip angle homogenization and fat suppression of interleaved binomial k T $$ {\mathrm{k}}_T $$ -points pulses is demonstrated in vivo at 7T, confirming Bloch simulation results. CONCLUSION: In this work, we present a time efficient and robust parallel transmission technique for nonselective water excitation with simultaneous flip angle homogenization at ultra-high field.


Assuntos
Processamento de Imagem Assistida por Computador , Água , Algoritmos , Encéfalo , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
5.
Front Aging Neurosci ; 14: 951022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034125

RESUMO

Physical inactivity is documented as a health risk factor for chronic diseases, accelerated aging, and cognitive impairment. Physical exercise, on the other hand, plays an important role in healthy aging by promoting positive muscular, cardiovascular, and central nervous system adaptions. Prior studies on the effects of exercise training on cerebral perfusion have focused largely on elderly cohorts or patient cohorts, while perfusion effects of exercise training in young sedentary adults have not yet been fully assessed. Therefore, the present study examined the physiological consequence of a 6-month endurance exercise training on brain perfusion in 28 young sedentary adults randomly assigned to an intervention group (IG; regular physical exercise) or a control group (CG; without physical exercise). The IG performed an extensive running interval training three times per week over 6 months. Performance diagnostics and MRI were performed every 2 months, and training intensity was adapted individually. Brain perfusion measurements with pseudo-continuous arterial spin labeling were analyzed using the standard Oxford ASL pipeline. A significant interaction effect between group and time was found for right superior temporal gyrus (STG) perfusion, driven by an increase in the IG and a decrease in the CG. Furthermore, a significant time effect was observed in the right middle occipital region in the IG only. Perfusion increases in the right STG, in the ventral striatum, and in primary motor areas were significantly associated with increases in maximum oxygen uptake (VO2max). Overall, this study identified region-specific increases in local perfusion in a cohort of young adults that partly correlated with individual performance increases, hence, suggesting exercise dose dependency. Respective adaptations in brain perfusion are discussed in the context of physical exercise-induced vascular plasticity.

6.
Magn Reson Med ; 88(5): 2217-2232, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35877781

RESUMO

PURPOSE: Quantitative multi-parameter mapping (MPM) has been shown to provide good longitudinal and cross-sectional reproducibility for clinical research. Unfortunately, acquisition times (TAs) are typically infeasible for routine scanning at high resolutions. METHODS: A fast whole-brain MPM protocol based on interleaved multi-shot 3D-EPI with controlled aliasing (SC-EPI) at 3T and 7T is proposed and compared with MPM using a standard spoiled gradient echo (FLASH) sequence. Four parameters (R1 , PD, R 2 * $$ {R}_2^{\ast } $$ , and MTsat) were measured in less than 3 min at 1 mm isotropic resolution. Five subjects went through the same scanning sessions twice at each scanner. The intra-subject coefficient of variation (scan-rescan) (CoV) was estimated for each protocol and scanner to assess the longitudinal reproducibility. RESULTS: At 3T, the CoV of SC-EPI ranged between 1.2%-4.8% for PD and R1 , 2.8%-10.6% for R 2 * $$ {R}_2^{\ast } $$ and MTsat, which was comparable with FLASH (0.6%-4.9% for PD and R1 , 2.6%-11.3% for R 2 * $$ {R}_2^{\ast } $$ and MTsat). At 7T, where the SC-EPI TA was reduced to ∼2 min, the CoV of SC-EPI (1.4%-10.6% for PD, R1 , and R 2 * $$ {R}_2^{\ast } $$ ) was 1.2-2.4 times larger than the CoV of FLASH (1.0%-15%) and MTsat showed much higher variability across subjects. The SC-EPI-MPM protocol at 3T showed high reproducibility and yielded stable quantitative maps at a clinically feasible resolution and scan time, whereas at 7T, MT saturation homogeneity needs to be improved. CONCLUSION: SC-EPI-based MPM is feasible as an additional MRI modality in clinical or population studies where the parameters offer great potential as biomarkers.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
7.
Artigo em Inglês | MEDLINE | ID: mdl-35627616

RESUMO

Acute exercise has beneficial effects on mood and is known to induce modulations in functional connectivity (FC) within the emotional network. However, the long-term effects of exercise on affective brain circuits remain largely unknown. Here, we investigated the effects of 6 months of regular exercise on mood, amygdala structure, and functional connectivity. This study comprised N = 18 healthy sedentary subjects assigned to an intervention group (IG; 23.9 ± 3.9 years; 3 trainings/week) and N = 10 subjects assigned to a passive control group (CG; 23.7 ± 4.2 years). At baseline and every two months, performance diagnostics, mood questionnaires, and structural and resting-state-fMRI were conducted. Amygdala-nuclei segmentation and amygdala-to-whole-brain FC analysis were performed. Linear mixed effects models and correlation analyses were conducted between FC, relVO2max, and mood scores. Data showed increases in relVO2max exclusively in the IG. Stronger anticorrelation in amygdala-precuneus FC was found, along with a stronger positive correlation in the amygdala-temporal pole FC in the IG after 4 and 6 months, while mood and amygdala volume did not reveal significant interactions. The relVO2max/amygdala-temporal pole FC correlated positively, and the amygdala-precuneus/amygdala-temporal pole FC correlated negatively. Findings suggest that exercise induced long-term modulations of the amygdala FC with the precuneus and temporal pole, shedding light on potential mechanisms by which exercise has positive influences on mood-related networks, typically altered in affective disorders.


Assuntos
Tonsila do Cerebelo , Mapeamento Encefálico , Afeto , Tonsila do Cerebelo/diagnóstico por imagem , Exercício Físico , Terapia por Exercício , Humanos
8.
J Psychiatry Neurosci ; 46(5): E528-E537, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34548387

RESUMO

BACKGROUND: Studies investigating sensory processing in attention-deficit/hyperactivity disorder (ADHD) have shown altered visual and auditory processing. However, evidence is lacking for audiovisual interplay - namely, multisensory integration. As well, neuronal dysregulation at rest (e.g., aberrant within- or between-network functional connectivity) may account for difficulties with integration across the senses in ADHD. We investigated whether sensory processing was altered at the multimodal level in adult ADHD and included resting-state functional connectivity to illustrate a possible overlap between deficient network connectivity and the ability to integrate stimuli. METHODS: We tested 25 patients with ADHD and 24 healthy controls using 2 illusionary paradigms: the sound-induced flash illusion and the McGurk illusion. We applied the Mann-Whitney U test to assess statistical differences between groups. We acquired resting-state functional MRIs on a 3.0 T Siemens magnetic resonance scanner, using a highly accelerated 3-dimensional echo planar imaging sequence. RESULTS: For the sound-induced flash illusion, susceptibility and reaction time were not different between the 2 groups. For the McGurk illusion, susceptibility was significantly lower for patients with ADHD, and reaction times were significantly longer. At a neuronal level, resting-state functional connectivity in the ADHD group was more highly regulated in polymodal regions that play a role in binding unimodal sensory inputs from different modalities and enabling sensory-to-cognition integration. LIMITATIONS: We did not explicitly screen for autism spectrum disorder, which has high rates of comorbidity with ADHD and also involves impairments in multisensory integration. Although the patients were carefully screened by our outpatient department, we could not rule out the possibility of autism spectrum disorder in some participants. CONCLUSION: Unimodal hypersensitivity seems to have no influence on the integration of basal stimuli, but it might have negative consequences for the multisensory integration of complex stimuli. This finding was supported by observations of higher resting-state functional connectivity between unimodal sensory areas and polymodal multisensory integration convergence zones for complex stimuli.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Percepção Auditiva , Descanso , Percepção Visual , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Espectro Autista/complicações , Feminino , Humanos , Ilusões , Imageamento por Ressonância Magnética , Masculino
9.
Magn Reson Med ; 85(3): 1540-1551, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32936488

RESUMO

PURPOSE: A segmented k-space blipped-controlled aliasing in parallel imaging (skipped-CAIPI) sampling strategy for EPI is proposed, which allows for a flexible choice of EPI factor and phase encode bandwidth independent of the controlled aliasing in parallel imaging (CAIPI) sampling pattern. THEORY AND METHODS: With previously proposed approaches, exactly two EPI trajectories were possible given a specific CAIPI pattern, either with slice gradient blips (blipped-CAIPI) or following a shot-selective CAIPI approach (higher resolution). Recently, interleaved multi-shot segmentation along shot-selective CAIPI trajectories has been applied for high-resolution anatomical imaging. For more flexibility and a broader range of applications, we propose segmentation along any blipped-CAIPI trajectory. Thus, all EPI factors and phase encode bandwidths available with traditional segmented EPI can be combined with controlled aliasing. RESULTS: Temporal SNR maps of moderate-to-high-resolution time series acquisitions at varying undersampling factors demonstrate beneficial sampling alternatives to blipped-CAIPI or shot-selective CAIPI. Rapid high-resolution scans furthermore demonstrate SNR-efficient and motion-robust structural imaging with almost arbitrary EPI factor and minimal noise penalty. CONCLUSION: Skipped-CAIPI sampling increases protocol flexibility for high spatiotemporal resolution EPI. In terms of SNR and efficiency, high-resolution functional or structural scans benefit vastly from a free choice of the CAIPI pattern. Even at moderate resolutions, the independence of sampling pattern, TE, and image matrix size is valuable for optimized functional protocol design. Although demonstrated with 3D-EPI, skipped-CAIPI is also applicable with simultaneous multislice EPI.


Assuntos
Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Algoritmos , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional
10.
Prog Neurobiol ; 207: 101835, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32512115

RESUMO

Recent methodological advances in fMRI contrast and readout strategies have allowed researchers to approach the mesoscopic spatial regime of cortical layers. This has revolutionized the ability to map cortical information processing within and across brain systems. However, until recently, most layer-fMRI studies have been confined to primary cortices using basic block-design tasks and macro-vascular-contaminated sequence contrasts. To become an established method for user-friendly applicability in neuroscience practice, layer-fMRI acquisition and analysis methods need to be extended to more flexible connectivity-based experiment designs; they must be able to capture subtle changes in brain networks of higher-order cognitive areas, and they should not be spatially biased with unwanted vein signals. In this article, we review the most pressing challenges of layer-dependent fMRI for large-scale neuroscientific applicability and describe recently developed acquisition methodologies that can resolve them. In doing so, we review technical tradeoffs and capabilities of modern MR-sequence approaches to achieve measurements that are free of locally unspecific vein signal, with whole-brain coverage, sub-second sampling, high resolutions, and with a combination of those capabilities. The presented approaches provide whole-brain layer-dependent connectivity data that open a new window to investigate brain network connections. We exemplify this by reviewing a number of candidate tools for connectivity analyses that will allow future studies to address new questions in network neuroscience. The considered network analysis tools include: hierarchy mapping, directional connectomics, source-specific connectivity mapping, and network sub-compartmentalization. We conclude: Whole-brain layer-fMRI without large-vessel contamination is applicable for human neuroscience and opens the door to investigate biological mechanisms behind any number of psychological and psychiatric phenomena, such as selective attention, hallucinations and delusions, and even conscious perception.


Assuntos
Conectoma , Atenção , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Cognição , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
11.
Sci Rep ; 10(1): 18299, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110203

RESUMO

Arterial spin labeling (ASL) is increasingly applied for cerebral blood flow mapping, but [Formula: see text] relaxation of the ASL signal magnetization is often ignored, although it may be clinically relevant. To investigate the extent, to which quantitative [Formula: see text] values in gray matter (GM) obtained by pseudocontinuous ASL (pCASL) perfusion MRI can be reproduced, are reliable and a potential neuroscientific biomarker, a prospective study was performed with ten healthy volunteers (5F,28 ± 3y) at a 3 T scanner. A [Formula: see text]-prepared pCASL sequence enabled the measurement of quantitative [Formula: see text] and perfusion maps. [Formula: see text] times were modeled per voxel and analyzed within four GM-regions-of-interest (ROI). The intraclass correlation coefficients (ICCs) of the quantified ASL-[Formula: see text] varied across brain regions. When averaged across subjects and postlabeling delays (PLDs), the ICCs ranged from reasonable values in parietal regions (ICC = 0.56) to smaller values in frontal regions (ICC = 0.36). Corresponding subject-averaged within-subject coefficients of variation (WSCVs) showed good test-retest measurement precision ([Formula: see text] for all PLDs), but more pronounced inter-subject variance. Reliability and precision of quantified ASL-[Formula: see text] were region-, PLD- and subject-specific, showing fair to robust results in occipital, parietal and temporal ROIs. The results give rise to consider the method for future cerebral studies, where variable perfusion or altered [Formula: see text] times are suspected.


Assuntos
Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Marcadores de Spin , Adulto , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Masculino , Substância Branca/diagnóstico por imagem
12.
Curr Biol ; 30(21): 4201-4212.e3, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32916120

RESUMO

The hippocampal subfields perform distinct operations during acquisition, differentiation, and recollection of episodic memories, and deficits in pattern separation are among the first symptoms of Alzheimer's disease (AD). We investigated how hippocampal subfields contribute to pattern separation and how this is affected by Apolipoprotein-E (APOE), the strongest AD genetic risk factor. Using ultra-high-field (7T) functional magnetic resonance imaging (fMRI), APOE-ε3-ε3 carriers predominantly recruited cornu ammonis 3 (CA3) during a spatial mnemonic discrimination task, whereas APOE-ε3-ε4 and APOE-ε3-ε2 carriers engaged CA3 and dentate gyrus (DG) to the same degree. Specifically, APOE-ε3-ε4 carriers showed reduced pattern separation in CA3, whereas APOE-ε3-ε2 carriers exhibited increased effects in DG and pattern separation-related functional connectivity between DG and CA3. Collectively, these results demonstrate that AD genetic risk alters hemodynamic responses in young pre-symptomatic individuals, paving the way for development of biomarkers for preclinical AD.


Assuntos
Doença de Alzheimer/genética , Apolipoproteínas E/genética , Região CA3 Hipocampal/fisiopatologia , Giro Denteado/fisiopatologia , Memória Episódica , Adulto , Alelos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Apolipoproteínas E/metabolismo , Mapeamento Encefálico , Região CA3 Hipocampal/diagnóstico por imagem , Giro Denteado/diagnóstico por imagem , Feminino , Predisposição Genética para Doença , Técnicas de Genotipagem , Voluntários Saudáveis , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Fatores de Risco , Adulto Jovem
13.
Magn Reson Med ; 84(5): 2469-2483, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32385888

RESUMO

PURPOSE: CEST MRI enables imaging of distributions of low-concentrated metabolites as well as proteins and peptides and their alterations in diseases. CEST examinations often suffer from low spatial resolution, long acquisition times, and concomitant motion artifacts. This work aims to maximize both resolution and volume coverage with a 3D-EPI snapshot CEST approach at 3T, allowing for fast and robust whole-brain CEST MRI. METHODS: Resolution and temporal SNR of 3D-EPI examinations with nonselective excitation were optimized at a clinical 3T MR scanner in five healthy subjects using a clinical head/neck coil. A CEST presaturation module for low power relayed nuclear Overhauser enhancement and amide proton transfer contrast was applied as an example. The suggested postprocessing included motion correction, dynamic B0 correction, denoising, and B1 correction and was compared to an established 3D-gradient echo-based sequence. RESULTS: CEST examinations were performed at 1.8 mm nominal isotropic resolution in 4.3 s per presaturation offset. In contrast to slab-selective 3D or multislice approaches, the whole brain was covered. Repeated examinations at three different B1 values took 13 minutes for 58 presaturation offsets with temporal SNR around 75. The resulting CEST effects revealed significant gray and white matter contrast and were of similar quality across the whole brain. Coefficient of variation across three healthy subjects was below 9%. CONCLUSION: The suggested protocol enables whole brain coverage at 1.8 mm isotropic resolution and fast acquisition of 4.3 s per presaturation offset. For the fitted CEST amplitudes, high reproducibility was proven, increasing the opportunities of quantitative CEST investigations at 3T significantly.


Assuntos
Encéfalo , Substância Branca , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Prótons , Reprodutibilidade dos Testes
14.
Magn Reson Med ; 84(4): 2219-2230, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32270542

RESUMO

PURPOSE: To improve the quality of mean apparent propagator (MAP) reconstruction from a limited number of q-space samples. METHODS: We implement an ℓ1 -regularised MAP (MAPL1) to consider higher order basis functions and to improve the fit without increasing the number of q-space samples. We compare MAPL1 with the least-squares optimization subject to non-negativity (MAP), and the Laplacian-regularized MAP (MAPL). We use simulations of crossing fibers and compute the normalized mean squared error (NMSE) and the Pearson's correlation coefficient to evaluate the reconstruction quality in q-space. We also compare coefficient-based diffusion indices in the simulations and in in vivo data. RESULTS: Results indicate that MAPL1 improves NMSE in 1 to 3% when compared to MAP or MAPL in a high undersampling regime. Additionally, MAPL1 produces more reproducible and accurate results for all sampling rates when there are enough basis functions to meet the sparsity criterion for the regularizer. These improved reconstructions also produce better coefficient-based diffusion indices for in vivo data. CONCLUSIONS: Adding an ℓ1 regularizer to MAP allows the use of more basis functions and a better fit without increasing the number of q-space samples. The impact of our research is that a complete diffusion spectrum can be reconstructed from an acquisition time very similar to a diffusion tensor imaging protocol.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Algoritmos , Encéfalo/diagnóstico por imagem , Aumento da Imagem
15.
Magn Reson Med Sci ; 19(2): 108-118, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31080210

RESUMO

PURPOSE: To compare different q-space reconstruction methods for undersampled diffusion spectrum imaging data. MATERIALS AND METHODS: We compared the quality of three methods: Mean Apparent Propagator (MAP); Compressed Sensing using Identity (CSI) and Compressed Sensing using Dictionary (CSD) with simulated data and in vivo acquisitions. We used retrospective undersampling so that the fully sampled reconstruction could be used as ground truth. We used the normalized mean squared error (NMSE) and the Pearson's correlation coefficient as reconstruction quality indices. Additionally, we evaluated two propagator-based diffusion indices: mean squared displacement and return to zero probability. We also did a visual analysis around the centrum semiovale. RESULTS: All methods had reconstruction errors below 5% with low undersampling factors and with a wide range of noise levels. However, the CSD method had at least 1-2% lower NMSE than the other reconstruction methods at higher noise levels. MAP was the second-best method when using a sufficiently high number of q-space samples. MAP reconstruction showed better propagator-based diffusion indices for in vivo acquisitions. With undersampling factors greater than 4, MAP and CSI have noticeably more reconstruction error than CSD. CONCLUSION: Undersampled data were best reconstructed by means of CSD in simulations and in vivo. MAP was more accurate in the extraction of propagator-based indices, particularly for in vivo data.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos
16.
Magn Reson Med ; 82(5): 1741-1752, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31199016

RESUMO

PURPOSE: The aim of this work is to develop a fast and robust CEST sequence in order to allow the acquisition of a whole-brain imaging volume after a single preparation block (snapshot acquisition). METHODS: A 3D-CEST sequence with an optimized 3D-EPI readout module was developed, which acquires the complete k-space data following a single CEST preparation for 1 saturation offset. Whole-brain mapping of the Z-spectrum with 2 mm isotropic resolution is achieved at 68 saturation frequencies in 5 minutes (4.33 s per offset). We analyzed the B1 distribution in order to optimize B1 correction and to provide accurate CEST quantification across the whole brain. RESULTS: We obtained maps for 3 different CEST contrasts from 4 healthy subjects. Based on our B1 distribution analysis, we conclude that 3 B1 sampling points allow for sufficient compensation of B1 variations across most of the brain. Two brain regions, the cerebellum and the temporal lobes, are difficult to quantify at 7 T due to very low B1 that was achieved in these regions. CONCLUSIONS: The proposed sequence enables robust acquisition of 2 mm isotropic whole-brain CEST maps at 7 Tesla within a total scan time of 16 minutes.


Assuntos
Mapeamento Encefálico/métodos , Imagem Ecoplanar/métodos , Imageamento Tridimensional/métodos , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Razão Sinal-Ruído
17.
Magn Reson Med ; 82(3): 924-934, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038244

RESUMO

PURPOSE: Demonstration of a 3D version of the DREAM sequence (3DREAM) for rapid 3D flip angle and B1+ mapping of the human brain. METHODS: A rectangular non-selective STE preparation is followed by a 3D readout with a Cartesian center-out spiral phase encoding order. This enables parallel imaging acceleration in both phase encoding dimensions as well as early capture of the prepared magnetization. RESULTS: B1+ mapping of the whole human head is demonstrated on a 7T system at a nominal resolution of 5 mm with and without parallel imaging acceleration. Artifacts caused by the different signal decay of the FID and STE signal during the long imaging train is suppressed by appropriate filtering of the FID image. Remaining blurring can be controlled by adjusting the echo train length and readout flip angle. CONCLUSIONS: 3DREAM provides a whole-brain flip angle map in a few seconds or individual maps for an 8-channel array in about a minute.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Artefatos , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas
18.
NMR Biomed ; 32(3): e4055, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30637831

RESUMO

Time constraints placed on magnetic resonance imaging often restrict the application of advanced diffusion MRI (dMRI) protocols in clinical practice and in high throughput research studies. Therefore, acquisition strategies for accelerated dMRI have been investigated to allow for the collection of versatile and high quality imaging data, even if stringent scan time limits are imposed. Diffusion spectrum imaging (DSI), an advanced acquisition strategy that allows for a high resolution of intra-voxel microstructure, can be sufficiently accelerated by means of compressed sensing (CS) theory. CS theory describes a framework for the efficient collection of fewer samples of a data set than conventionally required followed by robust reconstruction to recover the full data set from sparse measurements. For an accurate recovery of DSI data, a suitable acquisition scheme for sparse q-space sampling and the sensing and sparsifying bases for CS reconstruction need to be selected. In this work we explore three different types of q-space undersampling schemes and two frameworks for CS reconstruction based on either Fourier or SHORE basis functions. After CS recovery, diffusion and microstructural parameters and orientational information are estimated from the reconstructed data by means of state-of-the-art processing techniques for dMRI analysis. By means of simulation, diffusion phantom and in vivo DSI data, an isotropic distribution of q-space samples was found to be optimal for sparse DSI. The CS reconstruction results indicate superior performance of Fourier-based CS-DSI compared to the SHORE-based approach. Based on these findings we outline an experimental design for accelerated DSI and robust CS reconstruction of the sparse measurements that is suitable for the application within time-limited studies.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Aceleração , Adulto , Simulação por Computador , Feminino , Humanos , Imagens de Fantasmas
19.
Front Neurosci ; 12: 650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319336

RESUMO

Mapping non-invasively the complex microstructural architecture of the living human brain, diffusion magnetic resonance imaging (dMRI) is one of the core imaging modalities in current population studies. For the application in longitudinal population imaging, the dMRI protocol should deliver reliable data with maximum potential for future analysis. With the recent introduction of novel MRI hardware, advanced dMRI acquisition strategies can be applied within reasonable scan time. In this work we conducted a pilot study based on the requirements for high resolution dMRI in a long-term and high throughput population study. The key question was: can diffusion spectrum imaging accelerated by compressed sensing theory (CS-DSI) be used as an advanced imaging protocol for microstructure dMRI in a long-term population imaging study? As a minimum requirement we expected a high level of agreement of several diffusion metrics derived from both CS-DSI and a 3-shell high angular resolution diffusion imaging (HARDI) acquisition, an established imaging strategy used in other population studies. A wide spectrum of state-of-the-art diffusion processing and analysis techniques was applied to the pilot study data including quantitative diffusion and microstructural parameter mapping, fiber orientation estimation and white matter fiber tracking. When considering diffusion weighted images up to the same maximum diffusion weighting for both protocols, group analysis across 20 subjects indicates that CS-DSI performs comparable to 3-shell HARDI in the estimation of diffusion and microstructural parameters. Further, both protocols provide similar results in the estimation of fiber orientations and for local fiber tracking. CS-DSI provides high radial resolution while maintaining high angular resolution and it is well-suited for analysis strategies that require high b-value acquisitions, such as CHARMED modeling and biomarkers from the diffusion propagator.

20.
Magn Reson Med ; 80(6): 2475-2484, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29770492

RESUMO

PURPOSE: To investigate the impact of accelerated, single-shot 3D-GRASE acquisition on quantitative arterial spin labeling (ASL) with multiple and single post-labeling delay (PLD) in terms of perfusion-weighted SNR per unit scan time (TSNRPW ) and quantification accuracy. METHODS: Five subjects were scanned on a 3T MRI scanner using the pseudo-continuous arterial spin labeling (PCASL) technique with a 3D-GRASE imaging sequence capable of parallel imaging acceleration. A 3-inversion pulse background suppression was simulated and implemented in the sequence. Three time-matched single PLD measurements, a segmented one without acceleration, 1 with conventional GRAPPA, and 1 with CAIPIRINHA sampling, were used to compare TSNRPW . Three time-matched multiple PLD measurements with the identical imaging parameters were additionally evaluated (no acceleration vs. CAIPIRINHA sampling vs. CAIPIRINHA sampling with doubled number of PLDs). Cerebral blood flow and arterial transit time fit uncertainties were compared and used as a quality measure. RESULTS: The single PLD measurements show an 11% TSNRPW increase using CAIPIRINHA sampling instead of GRAPPA sampling, while the non-accelerated scan exhibits 35% higher TSNRPW compared to the GRAPPA scan. However, taking advantage of the increased number of averages for multiple PLD acquisitions, a 14%/16% (gray matter) and 34%/36% (white matter) reduction of CBF fit uncertainty is observed with CAIPIRINHA sampling (6 PLDs/12 PLDs) compared to no acceleration. CONCLUSION: Accelerated single-shot 3D-GRASE with PCASL allows for smaller quantification uncertainties than time-matched segmented acquisitions. Corresponding single-shot acquisitions with acceptable blurring and no intra-volume motion render state-of-the-art ASL methods in a clinically feasible time possible.


Assuntos
Artérias/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Marcadores de Spin , Adulto , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Calibragem , Circulação Cerebrovascular , Simulação por Computador , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Movimento (Física) , Perfusão , Reprodutibilidade dos Testes , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...