Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 166: 107329, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678410

RESUMO

The papilionoid legume genus Ormosia (Fabaceae) comprises about 150 species of trees and exhibits a striking disjunct geographical distribution between the New World- and Asian and Australasian wet tropics and subtropics. Modern classifications of Ormosia are not grounded on a well-substantiated phylogenetic hypothesis and have been limited to just portions of the geographical range of the genus. The lack of an evolutionarily-based foundation for systematic studies has hindered taxonomic work on the genus and prevented the testing of biogeographical hypotheses related to the origin of the Old World/New World disjunction and the individual dispersal histories within both areas. Here, we present the most comprehensively sampled molecular phylogeny of Ormosia to date, based on analysis of both nuclear (ITS) and plastid (matK and trnL-F) DNA sequences from 82 species of the genus. Phylogenetically-based divergence times and ancestral range estimations are employed to test hypotheses related to the biogeographical history of the genus. We find strong support for the monophyly of Ormosia and the grouping of all sampled Asian species of the genus into two comparably sized clades, one of which is sister to another large clade containing all sampled New World species. Within the New World clade, additional resolution supports the grouping of most species into three mutually exclusive subordinate clades. The remaining New World species form a fourth well-supported clade in the analyses of plastid sequences, but that result is contradicted by the analysis of ITS. With few exceptions the supported clades have not been previously recognized as taxonomic groups. The biogeographical analysis suggests that Ormosia originated in continental Asia and dispersed to the New World in the Oligocene or early Miocene via long-distance trans-oceanic dispersal. We reject the hypothesis that the inter-hemispheric disjunction in Ormosia resulted from fragmentation of a more continuous "Boreotropical" distribution since the dispersal post-dates Eocene climatic maxima. Both of the Old World clades appear to have originated in mainland Asia and subsequently dispersed into the Malay Archipelago and beyond, at least two lineages dispersing across Wallace's Line as far as the Solomon Islands and northeastern Australia. In the New World, the major clades all originated in Amazonia. Dispersal from Amazonia into peripheral areas in Central America, the Caribbean, and Extra-Amazonian Brazil occurred multiple times over varying time scales, the earliest beginning in the late Miocene. In a few cases, these dispersals were followed by local diversification, but not by reverse migration back to Amazonia. Within each of the two main areas of distribution, multiple modest bouts of oceanic dispersal were required to achieve the modern distributions.


Assuntos
Fabaceae , Teorema de Bayes , Evolução Biológica , Fabaceae/genética , Filogenia , Filogeografia , Plastídeos/genética
2.
PhytoKeys ; 182: 107-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707456

RESUMO

In this study, Indigoferawenholdiae, a new species of Fabaceae from the Agulhas Plain Region of the Western Cape Province, South Africa, is described. A composite photographic plate is included along with a distribution map, description of habitat and ecology and proposed IUCN conservation status. Indigoferawenholdiae is unique in the I.brachystachya group by having digitately compound (vs. pinnately compound) leaves, white and unscented flowers (vs. pink and sweetly scented flowers) and grows on sandstone hillsides (vs. coastal limestone plains and outcrops).

3.
PhytoKeys ; (99): 93-99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881322

RESUMO

Psoralea forbesiae C.H.Stirt., A.Bello & Muasya is a new species of Psoraleeae, Fabaceae. Psoralea forbesiae is endemic to the Swartberg Mountains and is a tall densely branched re-sprouting shrub up to 2.5 m, with bluish-green stems and with most parts covered in small crater-like glands, leaves pinnately 3-foliolate, linear-oblong, pale bluish-green, semi-conduplicate, somewhat succulent, glabrous, crowded at the end of bare branches on older stems or distributed along short branches on young shoots, petiolate. A description of P. forbesiae, together with photographs and a distribution map are presented.

4.
Genes (Basel) ; 9(1)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29271943

RESUMO

Over 760 legume species occur in the ecologically-heterogeneous Core Cape Subregion (CCR) of South Africa. This study tested whether the main symbionts of CCR legumes (Burkholderia and Mesorhizobium) are phylogenetically structured by altitude, pH and soil types. Rhizobial strains were isolated from field nodules of diverse CCR legumes and sequenced for 16S ribosomic RNA (rRNA), recombinase A (recA) and N-acyltransferase (nodA). Phylogenetic analyses were performed using Bayesian and maximum likelihood techniques. Phylogenetic signals were determined using the D statistic for soil types and Pagel's λ for altitude and pH. Phylogenetic relationships between symbionts of the narrowly-distributed Indigofera superba and those of some widespread CCR legumes were also determined. Results showed that Burkholderia is restricted to acidic soils, while Mesorhizobium occurs in both acidic and alkaline soils. Both genera showed significant phylogenetic clustering for pH and most soil types, but not for altitude. Therefore, pH and soil types influence the distribution of Burkholderia and Mesorhizobium in the CCR. All strains of Indigofera superba were identified as Burkholderia, and they were nested within various clades containing strains from outside its distribution range. It is, therefore, hypothesized that I. superba does not exhibit rhizobial specificity at the intragenic level. Implications for CCR legume distributions are discussed.

5.
AoB Plants ; 72015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26507570

RESUMO

Large-scale DNA barcoding provides a new technique for species identification and evaluation of relationships across various levels (populations and species) and may reveal fundamental processes in recently diverged species. Here, we analysed DNA sequence variation in the recently diverged legumes from the Psoraleeae (Fabaceae) occurring in the Cape Floristic Region (CFR) of southern Africa to test the utility of DNA barcodes in species identification and discrimination. We further explored the phylogenetic signal on fire response trait (reseeding and resprouting) at species and generic levels. We showed that Psoraleoid legumes of the CFR exhibit a barcoding gap yielding the combination of matK and rbcLa (matK + rbcLa) data set as a better barcode than single regions. We found a high score (100 %) of correct identification of individuals to their respective genera but a very low score (<50 %) in identifying them to species. We found a considerable match (54 %) between genetic species and morphologically delimited species. We also found that different lineages showed a weak but significant phylogenetic conservatism in their response to fire as reseeders or resprouters, with more clustering of resprouters than would be expected by chance. These novel microevolutionary patterns might be acting continuously over time to produce multi-scale regularities of biodiversity. This study provides the first insight into the DNA barcoding campaign of land plants in species identification and detection of the phylogenetic signal in recently diverged lineages of the CFR.

6.
PhytoKeys ; (44): 97-107, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25698896

RESUMO

Two new species of Psoralea L. are described: Psoraleaditurnerae A. Bello, C.H. Stirt. & Muasya, sp. nov. and Psoraleavanberkelae C.H. Stirt., A. Bello & Muasya, sp. nov. Psoraleaditurnerae is endemic to the Outeniqua mountains (Camferskloof) and is characterised by a mass of numerous basal shoots out of which emerge 2-3 woody stems up to 2 m tall, 3-foliolate needle-like leaflets at the base of the seasonally growing shoot reducing to one towards the apex and bearing numerous 1-3-flowered axillary inflorescences along its length; each mauve to purple and white flower subtended by a trifid cupulum. Psoraleavanberkelae is characterised by its spreading mounding habit, short tightly packed fleshy leaves, with large impressed papillae, densely glandular short broadly triangular stipules, pale to intense mauve to deep blue flowers, standard with a dark purple central blotch above a M-shaped white patch situated above claw, and khaki seeds with purple flecks.

7.
PhytoKeys ; (17): 19-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23233814

RESUMO

A new species of Psoralea is described. Psoralea karooensis C.H. Stirt., Muasya & Vlok is endemic to mountain streams in the Klein Karoo region of the Western Cape Province, South Africa. The new species is characterised by its flexuose habit of many stiff bare stems with the seasonal shoots arising apically in clusters and its greenish cream flowers borne at the apex of 10-12 mm long peduncles each ending in a trifid cupulum.

8.
Springerplus ; 1(1): 56, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23316449

RESUMO

UNLABELLED: Botanical work since 2008 on the Sleeping Giant section of the Kamdebooberge (Sneeuberg mountain complex, Eastern Cape, South Africa) has indicated that these mountains may be of significant conservation value. Accordingly, a precursory, rapid multi-disciplinary biodiversity assessment was undertaken in January 2011, focusing on plants, tetrapod vertebrates and leafhoppers. The botanical results confirm the Kamdebooberge as being of high botanical conservation value, hosting three strict endemics, healthy populations of five other Sneeuberg endemics, and fynbos communities comprising species not found elsewhere in the Sneeuberg. The Kamdebooberge are important for herpetofauna (excluding serpentoids) and mammals, hosting several range-restricted and regional endemics. The expedition uncovered three new leafhopper species, together with several species previously only known from the Cape Floristic Region. Further detailed faunal work may provide further interesting results from these mountains, which show a high conservation value unique to the southern Escarpment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2193-1801-1-56) contains supplementary material, which is available to authorized users.

9.
PhytoKeys ; (5): 31-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22171191

RESUMO

A new species of Psoralea is described. Psoralea margaretiflora C.H. Stirton & V.R. Clark is endemic to the Sneeuberg Centre of Floristic Endemism, Eastern Cape, South Africa. This resprouter is characterised by its small greenish-white flowers with a small trifid purple nectar patch and translucent veins; 5(-7)-pinnate leaflets; multi-branching erect short seasonal flowering shoots; and tall habit of many stiff bare stems with the seasonal shoots massed at the apex. It is most similar to Psoralea oligophylla Eckl. & Zeyh., a widespread species found in the Eastern Cape. The reseeder Psoralea oligophylla differs in its lax virgate spreading habit with numerous long glaucous seasonal shoots; single stem, 1(-3)- glaucous leaflets; more numerous white flowers; and standard petals with a purple ring surrounding a bright yellow nectar patch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...