Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39345527

RESUMO

Immunotherapy leads to cancer eradication despite the tumor's immunosuppressive environment. Here, we used extended long-term in-vivo imaging and high-resolution spatial transcriptomics of endogenous melanoma in zebrafish, and multiplex imaging of human melanoma, to identify domains that facilitate immune response during immunotherapy. We identified crater-shaped pockets at the margins of zebrafish and human melanoma, rich with beta-2 microglobulin (B2M) and antigen recognition molecules. The craters harbor the highest density of CD8 + T cells in the tumor. In zebrafish, CD8 + T cells formed prolonged interactions with melanoma cells within craters, characteristic of antigen recognition. Following immunostimulatory treatment, the craters enlarged and became the major site of activated CD8 + T cell accumulation and tumor killing that was B2M dependent. In humans, craters predicted immune response to ICB therapy, showing response better than high T cell infiltration. This marks craters as potential new diagnostic tool for immunotherapy success and targets to enhance ICB response.

2.
Neurobiol Dis ; 106: 191-204, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28711409

RESUMO

The pathology of Parkinson's disease and other synucleinopathies is characterized by the formation of intracellular inclusions comprised primarily of misfolded, fibrillar α-synuclein (α-syn). One strategy to slow disease progression is to prevent the misfolding and aggregation of its native monomeric form. Here we present findings that support the contention that the tricyclic antidepressant compound nortriptyline (NOR) has disease-modifying potential for synucleinopathies. Findings from in vitro aggregation and kinetics assays support the view that NOR inhibits aggregation of α-syn by directly binding to the soluble, monomeric form, and by enhancing reconfiguration of the monomer, inhibits formation of toxic conformations of the protein. We go on to demonstrate that NOR inhibits the accumulation, aggregation and neurotoxicity of α-syn in multiple cell and animal models. These findings suggest that NOR, a compound with established safety and efficacy for treatment of depression, may slow progression of α-syn pathology by directly binding to soluble, native, α-syn, thereby inhibiting pathological aggregation and preserving its normal functions.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nortriptilina/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , alfa-Sinucleína/metabolismo , Animais , Animais Geneticamente Modificados , Antidepressivos Tricíclicos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Drosophila , Escherichia coli , Humanos , Masculino , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Desdobramento de Proteína/efeitos dos fármacos , Distribuição Aleatória , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA