Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470241

RESUMO

Expression of activated Ras, RasV12, provides Drosophila cultured cells with a proliferation and survival advantage that simplifies the generation of continuous cell lines. Here, we used lineage-restricted RasV12 expression to generate continuous cell lines of muscle, glial, and epithelial cell type. Additionally, cell lines with neuronal and hemocyte characteristics were isolated by cloning from cell cultures established with broad RasV12 expression. Differentiation with the hormone ecdysone caused maturation of cells from mesoderm lines into active muscle tissue and enhanced dendritic features in neuronal-like lines. Transcriptome analysis showed expression of key cell-type-specific genes and the expected alignment with single-cell sequencing and in situ data. Overall, the technique has produced in vitro cell models with characteristics of glia, epithelium, muscle, nerve, and hemocyte. The cells and associated data are available from the Drosophila Genomic Resource Center.


Fruit flies are widely used in the life and biomedical sciences as models of animal biology. They are small in size and easy to care for in a laboratory, making them ideal for studying how the body works. There are, however, some experiments that are difficult to perform on whole flies and it would be advantageous to use populations of fruit fly cells grown in the laboratory ­ known as cell cultures ­ instead. Unlike studies in humans and other mammals, which ­ for ethical and practical reasons ­heavily rely on cell cultures, few studies have used fruit fly cell cultures. Recent work has shown that having an always active version of a gene called Ras in fruit fly cells helps the cells to survive and grow in cultures, making it simpler to generate new fruit fly cell lines compared with traditional methods. However, the methods used to express activated Ras result in cell lines that can be a mixture of many different types of cell, which limits how useful they are for research. Here, Coleman-Gosser, Hu, Raghuvanshi, Stitzinger et al. aimed to use Ras to generate a collection of cell lines from specific types of fruit fly cells in the muscle, nervous system, blood and other parts of the body. The experiments show that selectively expressing activated Ras in an individual type of cell enables them to outcompete other cells in culture to generate a cell line consisting only of the cell type of interest. The new cell lines offer models for experiments that more closely reflect their counterparts in flies. For example, the team were able to recapitulate how fly muscles develop by treating one of the cell lines with a hormone called ecdysone, which triggered the cells to mature into active muscle cells that spontaneously contract and relax. In the future, the new cell lines could be used for various experiments including high throughput genetic screening or testing the effects of new drugs and other compounds. The method used in this work may also be used by other researchers to generate more fruit fly cell lines.


Assuntos
Drosophila , Hemócitos , Animais , Drosophila/genética , Neuroglia/metabolismo , Linhagem Celular , Músculos , Drosophila melanogaster/genética
2.
Development ; 130(3): 463-71, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12490553

RESUMO

Alternative splicing of the Sex-lethal pre-mRNA has long served as a model example of a regulated splicing event, yet the mechanism by which the female-specific SEX-LETHAL RNA-binding protein prevents inclusion of the translation-terminating male exon is not understood. Thus far, the only general splicing factor for which there is in vivo evidence for a regulatory role in the pathway leading to male-exon skipping is sans-fille (snf), a protein component of the spliceosomal U1 and U2 snRNPs. Its role, however, has remained enigmatic because of questions about whether SNF acts as part of an intact snRNP or a free protein. We provide evidence that SEX-LETHAL interacts with SANS-FILLE in the context of the U1 snRNP, through the characterization of a point mutation that interferes with both assembly into the U1 snRNP and complex formation with SEX-LETHAL. Moreover, we find that SEX-LETHAL associates with other integral U1 snRNP components, and we provide genetic evidence to support the biological relevance of these physical interactions. Similar genetic and biochemical approaches also link SEX-LETHAL with the heterodimeric splicing factor, U2AF. These studies point specifically to a mechanism by which SEX-LETHAL represses splicing by interacting with these key splicing factors at both ends of the regulated male exon. Moreover, because U2AF and the U1 snRNP are only associated transiently with the pre-mRNA during the course of spliceosome assembly, our studies are difficult to reconcile with the current model that proposes that the SEX-LETHAL blocks splicing at the second catalytic step, and instead argue that the SEX-LETHAL protein acts after splice site recognition, but before catalysis begins.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Nucleares , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/embriologia , Éxons , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Homeostase , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Mutação Puntual , Ribonucleoproteína Nuclear Pequena U1/genética , Homologia de Sequência de Aminoácidos , Diferenciação Sexual/genética , Diferenciação Sexual/fisiologia , Fator de Processamento U2AF
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...