Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(8): eadi8136, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381821

RESUMO

Plastics are a recent particulate material in Earth's history. Because of plastics persistence and wide-range presence, it has a great potential of being a global age marker and correlation tool between sedimentary profiles. In this research, we query whether microplastics can be considered among the array of proxies to delimit the Anthropocene Epoch (starting from the year 1950 and above). We present a study of microplastics deposition history inferred from sediment profiles of lakes in northeastern Europe. The sediments were dated with independent proxies from the present back to the first half of the 18th century. Regardless of the sediment layer age, microplastic particles were found throughout the cores in all sites. Depending on particles' aspect ratio, less elongated particles were found deeper, while more elongated particles and fibers have reduced mobility. We conclude that interpretation of microplastics distribution in the studied sediment profiles is ambiguous and does not strictly indicate the beginning of the Anthropocene Epoch.

2.
Microorganisms ; 9(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807307

RESUMO

Fungi are ecologically important in several ecosystem processes, yet their community composition, ecophysiological roles, and responses to changing environmental factors in historical sediments are rarely studied. Here we explored ancient fungal DNA from lake Lielais Svetinu sediment throughout the Holocene (10.5 kyr) using the ITS metabarcoding approach. Our data revealed diverse fungal taxa and smooth community changes during most of the Holocene with rapid changes occurring in the last few millennia. More precisely, plankton parasitic fungi became more diverse from the Late Holocene (2-4 kyr) which could be related to a shift towards a cooler climate. The Latest Holocene (~2 kyr) showed a distinct increase in the richness of plankton parasites, mycorrhizal, and plant pathogenic fungi which can be associated with an increased transfer rate of plant material into the lake and blooms of planktonic organisms influenced by increased, yet moderate, human impact. Thus, major community shifts in plankton parasites and mycorrhizal fungi could be utilized as potential paleo-variables that accompany host-substrate dynamics. Our work demonstrates that fungal aDNA with predicted ecophysiology and host specificity can be employed to reconstruct both aquatic and surrounding terrestrial ecosystems and to estimate the influence of environmental change.

3.
Geobiology ; 16(6): 628-639, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30035382

RESUMO

Most studies that utilize ancient DNA have focused on specific groups of organisms or even single species. Instead, the whole biodiversity of eukaryotes can be described using universal phylogenetic marker genes found within well-preserved sediment cores that cover the post-glacial period. Sedimentary ancient DNA samples from Lake Lielais Svetinu, eastern Latvia, at a core depth of 1,050 cm in ~150 year intervals were used to determine phylotaxonomy in domain Eukaryota. Phylotaxonomic affiliation of >1,200 eukaryotic phylotypes revealed high richness in all major eukaryotic groups-Alveolata, Stramenopiles, Cercozoa, Chlorophyta, Charophyta, Nucletmycea, and Holozoa. The share of organisms that originate from terrestrial ecosystems was about one third, of which the most abundant molecular operational taxonomic units were Fungi and tracheal/vascular plants, which demonstrates the usefulness of using lake sediments to reconstruct the terrestrial paleoecosystems that surround them. Phylotypes that originate from the lake ecosystem belonged to various planktonic organisms; phyto-, proto,- and macrozooplankton, and vascular aquatic plants. We observed greater richness of several planktonic organisms that can be associated with higher trophic status during the warm climate period between 4,000 and 8,000 years ago and an increase in eukaryotic richness possibly associated with moderate human impact over the last 2,000 years.


Assuntos
DNA Antigo/análise , Sedimentos Geológicos/microbiologia , Animais , RNA Ribossômico 18S/análise , Análise de Sequência de DNA , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...