Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 32(10): 3324-3345, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32796121

RESUMO

NADH and NAD+ are a ubiquitous cellular redox couple. Although the central role of NAD in plant metabolism and its regulatory role have been investigated extensively at the biochemical level, analyzing the subcellular redox dynamics of NAD in living plant tissues has been challenging. Here, we established live monitoring of NADH/NAD+ in plants using the genetically encoded fluorescent biosensor Peredox-mCherry. We established Peredox-mCherry lines of Arabidopsis (Arabidopsis thaliana) and validated the biophysical and biochemical properties of the sensor that are critical for in planta measurements, including specificity, pH stability, and reversibility. We generated an NAD redox atlas of the cytosol of living Arabidopsis seedlings that revealed pronounced differences in NAD redox status between different organs and tissues. Manipulating the metabolic status through dark-to-light transitions, respiratory inhibition, sugar supplementation, and elicitor exposure revealed a remarkable degree of plasticity of the cytosolic NAD redox status and demonstrated metabolic redox coupling between cell compartments in leaves. Finally, we used protein engineering to generate a sensor variant that expands the resolvable NAD redox range. In summary, we established a technique for in planta NAD redox monitoring to deliver important insight into the in vivo dynamics of plant cytosolic redox metabolism.


Assuntos
Arabidopsis/metabolismo , Técnicas Biossensoriais/métodos , Citosol/metabolismo , Proteínas Luminescentes/genética , NAD/metabolismo , Arabidopsis/genética , Carbono/metabolismo , Fluorometria/métodos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/metabolismo , Malatos/metabolismo , Mitocôndrias/metabolismo , NAD/análise , Oxirredução , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/metabolismo , Proteína Vermelha Fluorescente
2.
Biochim Biophys Acta Bioenerg ; 1859(10): 1015-1024, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29800548

RESUMO

Maintenance of metabolic redox homeostasis is essential to all life and is a key factor in many biotechnological processes. Changes in the redox state of NAD affect metabolic fluxes, mediate regulation and signal transduction, and thus determine growth and productivity. Here we establish an in vivo monitoring system for the dynamics of the cytosolic NADH/NAD+ ratio in the basidiomycete Ustilago maydis using the ratiometric fluorescent sensor protein Peredox-mCherry. Metabolic redox dynamics were determined in the cytosol of living cells with high time resolution under biotechnologically relevant conditions, i.e. with high cell density and high aeration. Analytical boundary conditions for reliable analysis were determined, and perturbations in C-, N- or O- availability had marked impact on the cytosolic NADH/NAD+ ratio. NAD redox dynamics could be manipulated in lines inducibly expressing a water-forming NADH oxidase as a synthetic reductant sink. The establishment of Peredox-mCherry in U. maydis and the analysis of NAD redox dynamics provides a versatile methodology for the in vivo investigation of cellular metabolism, and contributes fundamental knowledge for rational design and optimization of biocatalysts.

3.
J Biol Chem ; 289(39): 26949-26959, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25122768

RESUMO

Conserved clusters of genes encoding DsrE and TusA homologs occur in many archaeal and bacterial sulfur oxidizers. TusA has a well documented function as a sulfurtransferase in tRNA modification and molybdenum cofactor biosynthesis in Escherichia coli, and DsrE is an active site subunit of the DsrEFH complex that is essential for sulfur trafficking in the phototrophic sulfur-oxidizing Allochromatium vinosum. In the acidothermophilic sulfur (S(0))- and tetrathionate (S4O6(2-))-oxidizing Metallosphaera cuprina Ar-4, a dsrE3A-dsrE2B-tusA arrangement is situated immediately between genes encoding dihydrolipoamide dehydrogenase and a heterodisulfide reductase-like complex. In this study, the biochemical features and sulfur transferring abilities of the DsrE2B, DsrE3A, and TusA proteins were investigated. DsrE3A and TusA proved to react with tetrathionate but not with NaSH, glutathione persulfide, polysulfide, thiosulfate, or sulfite. The products were identified as protein-Cys-S-thiosulfonates. DsrE3A was also able to cleave the thiosulfate group from TusA-Cys(18)-S-thiosulfonate. DsrE2B did not react with any of the sulfur compounds tested. DsrE3A and TusA interacted physically with each other and formed a heterocomplex. The cysteine residue (Cys(18)) of TusA is crucial for this interaction. The single cysteine mutants DsrE3A-C(93)S and DsrE3A-C(101)S retained the ability to transfer the thiosulfonate group to TusA. TusA-C(18)S neither reacted with tetrathionate nor was it loaded with thiosulfate with DsrE3A-Cys-S-thiosulfonate as the donor. The transfer of thiosulfate, mediated by a DsrE-like protein and TusA, is unprecedented not only in M. cuprina but also in other sulfur-oxidizing prokaryotes. The results of this study provide new knowledge on oxidative microbial sulfur metabolism.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Transporte/metabolismo , Complexos Multiproteicos/metabolismo , Sulfolobaceae/metabolismo , Enxofre/metabolismo , Sulfurtransferases/metabolismo , Substituição de Aminoácidos , Proteínas Arqueais/genética , Proteínas de Transporte/genética , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Oxirredução , Homologia de Sequência de Aminoácidos , Sulfolobaceae/genética , Sulfurtransferases/genética
4.
J Biol Chem ; 289(18): 12390-403, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24648525

RESUMO

The formation of periplasmic sulfur globules is an intermediate step during the oxidation of reduced sulfur compounds in various sulfur-oxidizing microorganisms. The mechanism of how this sulfur is activated and crosses the cytoplasmic membrane for further oxidation to sulfite by the dissimilatory reductase DsrAB is incompletely understood, but it has been well documented that the pathway involves sulfur trafficking mediated by sulfur-carrying proteins. So far sulfur transfer from DsrEFH to DsrC has been established. Persulfurated DsrC very probably serves as a direct substrate for DsrAB. Here, we introduce further important players in oxidative sulfur metabolism; the proteins Rhd_2599, TusA, and DsrE2 are strictly conserved in the Chromatiaceae, Chlorobiaceae, and Acidithiobacillaceae families of sulfur-oxidizing bacteria and are linked to genes encoding complexes involved in sulfur oxidation (Dsr or Hdr) in the latter two. Here we show via relative quantitative real-time PCR and microarray analysis an increase of mRNA levels under sulfur-oxidizing conditions for rhd_2599, tusA, and dsrE2 in Allochromatium vinosum. Transcriptomic patterns for the three genes match those of major genes for the sulfur-oxidizing machinery rather than those involved in biosynthesis of sulfur-containing biomolecules. TusA appears to be one of the major proteins in A. vinosum. A rhd_2599-tusA-dsrE2-deficient mutant strain, although not viable in liquid culture, was clearly sulfur oxidation negative upon growth on solid media containing sulfide. Rhd_2599, TusA, and DsrE2 bind sulfur atoms via conserved cysteine residues, and experimental evidence is provided for the transfer of sulfur between these proteins as well as to DsrEFH and DsrC.


Assuntos
Proteínas de Bactérias/metabolismo , Chromatiaceae/metabolismo , Citoplasma/metabolismo , Enxofre/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Transporte Biológico , Chromatiaceae/genética , Cisteína/genética , Cisteína/metabolismo , Eletroforese , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Viabilidade Microbiana/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Transcriptoma/genética
5.
J Bacteriol ; 195(18): 4231-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873913

RESUMO

The purple sulfur bacterium Allochromatium vinosum DSM 180(T) is one of the best-studied sulfur-oxidizing anoxygenic phototrophic bacteria, and it has been developed into a model organism for laboratory-based studies of oxidative sulfur metabolism. Here, we took advantage of the organism's high metabolic versatility and performed whole-genome transcriptional profiling to investigate the response of A. vinosum cells upon exposure to sulfide, thiosulfate, elemental sulfur, or sulfite compared to photoorganoheterotrophic growth on malate. Differential expression of 1,178 genes was observed, corresponding to 30% of the A. vinosum genome. Relative transcription of 551 genes increased significantly during growth on one of the different sulfur sources, while the relative transcript abundance of 627 genes decreased. A significant number of genes that revealed strongly enhanced relative transcription levels have documented sulfur metabolism-related functions. Among these are the dsr genes, including dsrAB for dissimilatory sulfite reductase, and the sgp genes for the proteins of the sulfur globule envelope, thus confirming former results. In addition, we identified new genes encoding proteins with appropriate subcellular localization and properties to participate in oxidative dissimilatory sulfur metabolism. Those four genes for hypothetical proteins that exhibited the strongest increases of mRNA levels on sulfide and elemental sulfur, respectively, were chosen for inactivation and phenotypic analyses of the respective mutant strains. This approach verified the importance of the encoded proteins for sulfur globule formation during the oxidation of sulfide and thiosulfate and thereby also documented the suitability of comparative transcriptomics for the identification of new sulfur-related genes in anoxygenic phototrophic sulfur bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Chromatiaceae/crescimento & desenvolvimento , Chromatiaceae/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Compostos de Enxofre/metabolismo , Proteínas de Bactérias/genética , Chromatiaceae/metabolismo , Meios de Cultura/química , Genes Bacterianos , Sulfito de Hidrogênio Redutase/genética , Sulfito de Hidrogênio Redutase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Sulfetos/metabolismo , Sulfitos/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo
6.
PLoS One ; 7(7): e40785, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815818

RESUMO

While the importance of sulfur transfer reactions is well established for a number of biosynthetic pathways, evidence has only started to emerge that sulfurtransferases may also be major players in sulfur-based microbial energy metabolism. Among the first organisms studied in this regard is the phototrophic purple sulfur bacterium Allochromatium vinosum. During the oxidation of reduced sulfur species to sulfate this Gammaproteobacterium accumulates sulfur globules. Low molecular weight organic persulfides have been proposed as carrier molecules transferring sulfur from the periplasmic sulfur globules into the cytoplasm where it is further oxidized via the "Dsr" (dissimilatory sulfite reductase) proteins. We have suggested earlier that the heterohexameric protein DsrEFH is the direct or indirect acceptor for persulfidic sulfur imported into the cytoplasm. This proposal originated from the structural similarity of DsrEFH with the established sulfurtransferase TusBCD from E. coli. As part of a system for tRNA modification TusBCD transfers sulfur to TusE, a homolog of another crucial component of the A. vinosum Dsr system, namely DsrC. Here we show that neither DsrEFH nor DsrC have the ability to mobilize sulfane sulfur directly from low molecular weight thiols like thiosulfate or glutathione persulfide. However, we demonstrate that DsrEFH binds sulfur specifically to the conserved cysteine residue DsrE-Cys78 in vitro. Sulfur atoms bound to cysteines in DsrH and DsrF were not detected. DsrC was exclusively persulfurated at DsrC-Cys111 in the penultimate position of the protein. Most importantly, we show that persulfurated DsrEFH indeed serves as an effective sulfur donor for DsrC in vitro. The active site cysteines Cys78 of DsrE and Cys20 of DsrH furthermore proved to be essential for sulfur oxidation in vivo supporting the notion that DsrEFH and DsrC are part of a sulfur relay system that transfers sulfur from a persulfurated carrier molecule to the dissimilatory sulfite reductase DsrAB.


Assuntos
Proteínas de Bactérias/metabolismo , Chromatiaceae/enzimologia , Citoplasma/enzimologia , Enxofre/metabolismo , Sulfurtransferases/metabolismo , Proteínas de Bactérias/química , Cisteína/metabolismo , Glutationa/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Oxirredução , Ligação Proteica , Estabilidade Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sulfatos/metabolismo , Sulfetos , Ressonância de Plasmônio de Superfície , Tiossulfatos
7.
J Mol Biol ; 384(5): 1287-300, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18952098

RESUMO

Many environmentally important photo- and chemolithoautotrophic bacteria accumulate globules of polymeric, water-insoluble sulfur as a transient product during oxidation of reduced sulfur compounds. Oxidation of this sulfur requires the concerted action of Dsr proteins. However, individual functions and interplay of these proteins are largely unclear. We proved with a DeltadsrE mutant experiment that the cytoplasmic alpha2beta2gamma2-structured protein DsrEFH is absolutely essential for the oxidation of sulfur stored in the intracellular sulfur globules of the purple sulfur bacterial model organism Allochromatium vinosum. The ability to degrade stored sulfur was fully regained upon complementation with dsrEFH in trans. The crystal structure of DsrEFH was determined at 2.5 A resolution to assist functional assignment in detail. In conjunction with phylogenetic analyses, two different types of putative active sites were identified in DsrE and DsrH and shown to be characteristic for sulfur-oxidizing bacteria. Conserved Cys78 of A. vinosum DsrE corresponds to the active cysteines of Escherichia coli YchN and TusD. TusBCD and the protein TusE are parts of sulfur relay system involved in thiouridine biosynthesis. DsrEFH interacts with DsrC, a TusE homologue encoded in the same operon. The conserved penultimate cysteine residue in the carboxy-terminus of DsrC is essential for the interaction. Here, we show that Cys78 of DsrE is strictly required for interaction with DsrC while Cys20 in the putative active site of DsrH is dispensable for that reaction. In summary, our findings point at the occurrence of sulfur transfer reactions during sulfur oxidation via the Dsr proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chromatiaceae/genética , Enxofre/metabolismo , Sequência de Aminoácidos , Teorema de Bayes , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Multimerização Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...