Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oral Microbiol ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224274

RESUMO

One-carbon metabolism (OCM) pathways are responsible for several functions, producing a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl) that are required for the synthesis of various amino acids and other biomolecules such as purines, thymidylate, redox regulators, and, in most microbes, folate. As humans must acquire folate from the diet, folate production is a target for antimicrobials such as sulfonamides. OCM impacts the regulation of microbial virulence such that in a number of instances, limiting the availability of para-aminobenzoic acid (pABA), an essential OCM precursor, causes a reduction in pathogenicity. Porphyromonas gingivalis, however, displays increased pathogenicity in response to lower pABA levels, and exogenous pABA exerts a calming influence on heterotypic communities of P. gingivalis with pABA-producing partner species. Differential responses to pABA may reflect both the physiology of the organisms and their host microenvironment. OCM plays an integral role in regulating the global rate of protein translation, where the alarmones ZMP and ZTP sense insufficient stores of intracellular folate and coordinate adaptive responses to compensate and restore folate to sufficient levels. The emerging interconnections between OCM, protein synthesis, and context-dependent pathogenicity provide novel insights into the dynamic host-microbe interface.

2.
mBio ; 14(3): e0065823, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042761

RESUMO

Pathogenic microbial ecosystems are often polymicrobial, and interbacterial interactions drive emergent properties of these communities. In the oral cavity, Streptococcus gordonii is a foundational species in the development of plaque biofilms, which can contribute to periodontal disease and, after gaining access to the bloodstream, target remote sites such as heart valves. Here, we used a transposon sequencing (Tn-Seq) library of S. gordonii to identify genes that influence fitness in a murine abscess model, both as a monoinfection and as a coinfection with an oral partner species, Porphyromonas gingivalis. In the context of a monoinfection, conditionally essential genes were widely distributed among functional pathways. Coinfection with P. gingivalis almost completely changed the nature of in vivo gene essentiality. Community-dependent essential (CoDE) genes under the coinfection condition were primarily related to DNA replication, transcription, and translation, indicating that robust growth and replication are required to survive with P. gingivalis in vivo. Interestingly, a group of genes in an operon encoding streptococcal receptor polysaccharide (RPS) were associated with decreased fitness of S. gordonii in a coinfection with P. gingivalis. Individual deletion of two of these genes (SGO_2020 and SGO_2024) resulted in the loss of RPS production by S. gordonii and increased susceptibility to killing by neutrophils. P. gingivalis protected the RPS mutants by inhibiting neutrophil recruitment, degranulation, and neutrophil extracellular trap (NET) formation. These results provide insight into genes and functions that are important for S. gordonii survival in vivo and the nature of polymicrobial synergy with P. gingivalis. Furthermore, we show that RPS-mediated immune protection in S. gordonii is dispensable and detrimental in the presence of a synergistic partner species that can interfere with neutrophil killing mechanisms. IMPORTANCE Bacteria responsible for diseases originating at oral mucosal membranes assemble into polymicrobial communities. However, we know little regarding the fitness determinants of the organisms that initiate community formation. Here, we show that the extracellular polysaccharide of Streptococcus gordonii, while important for streptococcal survival as a monoinfection, is detrimental to survival in the context of a coinfection with Porphyromonas gingivalis. We found that the presence of P. gingivalis compensates for immune protective functions of extracellular polysaccharide, rendering production unnecessary. The results show that fitness determinants of bacteria in communities differ substantially from those of individual species in isolation. Furthermore, constituents of communities can undertake activities that relieve the burden of energetically costly biosynthetic reactions on partner species.


Assuntos
Coinfecção , Streptococcus gordonii , Animais , Camundongos , Streptococcus gordonii/genética , Coinfecção/microbiologia , Ecossistema , Biofilmes , Boca
3.
Infect Immun ; 90(6): e0017022, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575504

RESUMO

Many pathogenic microbial ecosystems are polymicrobial, and community function can be shaped by interbacterial interactions. Little is known, however, regarding the genetic determinants required for fitness in heterotypic community environments. In periodontal diseases, Porphyromonas gingivalis is a primary pathogen, but only within polymicrobial communities. Here, we used a transposon sequencing (Tn-Seq) library of P. gingivalis to screen for genes that influence fitness of the organism in a coinfection murine abscess model with the oral partner species Streptococcus gordonii and Fusobacterium nucleatum. Genes impacting fitness with either organism were involved in diverse processes, including metabolism and energy production, along with cell wall and membrane biogenesis. Despite the overall similarity of function, the majority of identified genes were specific to the partner species, indicating that synergistic mechanisms of P. gingivalis vary to a large extent according to community composition. Only two genes were identified as essential for P. gingivalis fitness in abscess development with both S. gordonii and F. nucleatum: ptk1, encoding a tyrosine kinase, and inlJ, encoding an internalin family surface protein. Ptk1, but not InlJ, is required for community development with S. gordonii, and we found that the action of this kinase is similarly required for P. gingivalis to accumulate in a community with F. nucleatum. A limited number of P. gingivalis genes are therefore required for species-independent synergy, and the Ptk1 tyrosine kinase network may integrate and coordinate input from multiple organisms.


Assuntos
Coinfecção , Porphyromonas gingivalis , Abscesso , Animais , Coinfecção/microbiologia , Ecossistema , Fusobacterium nucleatum/genética , Camundongos , Porphyromonas gingivalis/metabolismo , Proteínas Tirosina Quinases/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992142

RESUMO

Bacterial behavior and virulence during human infection is difficult to study and largely unknown, as our vast knowledge of infection microbiology is primarily derived from studies using in vitro and animal models. Here, we characterize the physiology of Porphyromonas gingivalis, a periodontal pathogen, in its native environment using 93 published metatranscriptomic datasets from periodontally healthy and diseased individuals. P. gingivalis transcripts were more abundant in samples from periodontally diseased patients but only above 0.1% relative abundance in one-third of diseased samples. During human infection, P. gingivalis highly expressed genes encoding virulence factors such as fimbriae and gingipains (proteases) and genes involved in growth and metabolism, indicating that P. gingivalis is actively growing during disease. A quantitative framework for assessing the accuracy of model systems showed that 96% of P. gingivalis genes were expressed similarly in periodontitis and in vitro midlogarithmic growth, while significantly fewer genes were expressed similarly in periodontitis and in vitro stationary phase cultures (72%) or in a murine abscess infection model (85%). This high conservation in gene expression between periodontitis and logarithmic laboratory growth is driven by overall low variance in P. gingivalis gene expression, relative to other pathogens including Pseudomonas aeruginosa and Staphylococcus aureus Together, this study presents strong evidence for the use of simple test tube growth as the gold standard model for studying P. gingivalis biology, providing biological relevance for the thousands of laboratory experiments performed with logarithmic phase P. gingivalis Furthermore, this work highlights the need to quantitatively assess the accuracy of model systems.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Periodontite/microbiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/metabolismo , Animais , Fímbrias Bacterianas/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Laboratórios , Camundongos , Porphyromonas gingivalis/patogenicidade , Transcriptoma , Virulência/genética , Fatores de Virulência
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34921113

RESUMO

Here, we show that Porphyromonas gingivalis (Pg), an endogenous oral pathogen, dampens all aspects of interferon (IFN) signaling in a manner that is strikingly similar to IFN suppression employed by multiple viral pathogens. Pg suppressed IFN production by down-regulating several IFN regulatory factors (IRFs 1, 3, 7, and 9), proteolytically degrading STAT1 and suppressing the nuclear translocation of the ISGF3 complex, resulting in profound and systemic repression of multiple interferon-stimulated genes. Pg-induced IFN paralysis was not limited to murine models but was also observed in the oral tissues of human periodontal disease patients, where overabundance of Pg correlated with suppressed IFN generation. Mechanistically, multiple virulence factors and secreted proteases produced by Pg transcriptionally suppressed IFN promoters and also cleaved IFN receptors, making cells refractory to exogenous IFN and inducing a state of broad IFN paralysis. Thus, our data show a bacterial pathogen with equivalence to viruses in the down-regulation of host IFN signaling.


Assuntos
Gengiva/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferons/metabolismo , Interleucinas/metabolismo , Microbiota , Porphyromonas gingivalis/fisiologia , Animais , Linhagem Celular , Gengiva/metabolismo , Humanos , Camundongos , Cultura Primária de Células
6.
Mol Oral Microbiol ; 36(5): 258-266, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34241965

RESUMO

Phosphorylation of proteins is a key component of bacterial signaling systems that can control important functions such as community development and virulence. We report here the identification of a Ubiquitous bacterial Kinase (UbK) family member, designated UbK1, in the anaerobic periodontal pathogen, Porphyromonas gingivalis. UbK1 contains conserved SPT/S, Hanks-type HxDxYR, EW, and Walker A motifs, and a mutation analysis established the Walker A domain and the Hanks-type domain as required for both autophosphorylation and transphosphorylation. UbK1 autophosphorylates on the proximal serine in the SPT/S domain as well as the tyrosine residue within the HxDxYR domain and the tyrosine residue immediately proximal, indicating both serine/threonine and tyrosine specificity. The orphan two-component system response regulator (RR) RprY was phosphorylated on Y41 in the receiver domain by UbK1. The ubk1 gene is essential in P. gingivalis; however, overexpression of UbK1 showed that UbK1-mediated phosphorylation of RprY functions predominantly to augment its properties as a transcriptional enhancer. These results establish that P. gingivalis possesses an active UbK kinase in addition to a previously described Bacterial Tyrosine family kinase. The RR RprY is identified as the first transcriptional regulator controlled by a UbK enzyme.


Assuntos
Porphyromonas gingivalis , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosforilação , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Proteínas Tirosina Quinases/metabolismo , Virulência
7.
ISME J ; 15(9): 2627-2642, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33731837

RESUMO

At mucosal barriers, the virulence of microbial communities reflects the outcome of both dysbiotic and eubiotic interactions with the host, with commensal species mitigating or potentiating the action of pathogens. We examined epithelial responses to the oral pathogen Porphyromonas gingivalis as a monoinfection and in association with a community partner, Streptococcus gordonii. RNA-Seq of oral epithelial cells showed that the Notch signaling pathway, including the downstream effector olfactomedin 4 (OLFM4), was differentially regulated by P. gingivalis alone; however, regulation was overridden by S. gordonii. OLFM4 was required for epithelial cell migratory, proliferative and inflammatory responses to P. gingivalis. Activation of Notch signaling was induced through increased expression of the Notch1 receptor and the Jagged1 (Jag1) agonist. In addition, Jag1 was released in response to P. gingivalis, leading to paracrine activation. Following Jag1-Notch1 engagement, the Notch1 extracellular domain was cleaved by P. gingivalis gingipain proteases. Antagonism by S. gordonii involved inhibition of gingipain activity by secreted hydrogen peroxide. The results establish a novel mechanism by which P. gingivalis modulates epithelial cell function which is dependent on community context. These interrelationships have relevance for innate inflammatory responses and epithelial cell fate decisions in oral health and disease.


Assuntos
Células Epiteliais/microbiologia , Fator Estimulador de Colônias de Granulócitos , Porphyromonas gingivalis , Streptococcus gordonii , Células Cultivadas , Humanos , Porphyromonas gingivalis/patogenicidade , Streptococcus gordonii/fisiologia , Virulência
8.
Mol Oral Microbiol ; 35(6): 231-239, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32940001

RESUMO

Porphyromonas gingivalis expresses a limited number of two-component systems, including RprY, an orphan response regulator which lacks a cognate sensor kinase. In this study, we examined cross-phosphorylation of RprY on tyrosine residues and its importance for RprY function. We show that RprY reacts with phosphotyrosine antibodies, and found that the tyrosine (Y) residue at position 41 is predicted to be solvent accessible. Loss of RprY increased the level of heterotypic community development with Streptococcus gordonii, and the community-suppressive function of RprY required Y41. Expression of the Mfa1 fimbrial adhesin was increased in the rprY mutant and in the mutant complemented with rprY containing a Y41F mutation. In a microscale thermophoresis assay, recombinant RprY protein bound to the promoter region of mfa1, and binding was diminished with RprY containing the Y41F substitution. RprY was required for virulence of P. gingivalis in a murine model of alveolar bone loss. Transcriptional profiling indicated that RprY can control the expression of genes encoding the type IX secretion system (T9SS) machinery and virulence factors secreted through the T9SS, including the gingipain proteases and peptidylarginine deiminase (PPAD). Collectively, these results establish the RprY response regulator as a component of the tyrosine phosphorylation regulon in P. gingivalis, which can independently control heterotypic community development through the Mfa1 fimbriae and virulence through the T9SS.


Assuntos
Proteínas de Bactérias/genética , Porphyromonas gingivalis , Virulência , Adesinas Bacterianas/genética , Perda do Osso Alveolar/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Cisteína Endopeptidases Gingipaínas , Camundongos , Mutação , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/patogenicidade , Regiões Promotoras Genéticas , Desiminases de Arginina em Proteínas , Proteínas Recombinantes , Streptococcus gordonii , Fatores de Virulência
9.
Toxicol Appl Pharmacol ; 284(3): 304-14, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25759243

RESUMO

Arsenic (As) tops the ATSDR list of hazardous environmental chemicals and is known to cause liver injury. Although the concentrations of As found in the US water supply are generally too low to directly damage the liver, subhepatotoxic doses of As sensitize the liver to experimental NAFLD. It is now suspected that GI microbiome dysbiosis plays an important role in development of NALFD. Importantly, arsenic has also been shown to alter the microbiome. The purpose of the current study was to test the hypothesis that the prebiotic oligofructose (OFC) protects against enhanced liver injury caused by As in experimental NAFLD. Male C57Bl6/J mice were fed low fat diet (LFD), high fat diet (HFD), or HFD containing oligofructose (OFC) during concomitant exposure to either tap water or As-containing water (4.9ppm as sodium arsenite) for 10weeks. HFD significantly increased body mass and caused fatty liver injury, as characterized by an increased liver weight-to-body weight ratio, histologic changes and transaminases. As observed previously, As enhanced HFD-induced liver damage, which was characterized by enhanced inflammation. OFC supplementation protected against the enhanced liver damage caused by As in the presence of HFD. Interestingly, arsenic, HFD and OFC all caused unique changes to the gut flora. These data support previous findings that low concentrations of As enhance liver damage caused by high fat diet. Furthermore, these results indicate that these effects of arsenic may be mediated, at least in part, by GI tract dysbiosis and that prebiotic supplementation may confer significant protective effects.


Assuntos
Arsenitos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/complicações , Oligossacarídeos/farmacologia , Prebióticos , Compostos de Sódio , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/microbiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citoproteção , Dieta Hiperlipídica , Modelos Animais de Doenças , Disbiose , Mediadores da Inflamação/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...