Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Auton Neurosci ; 254: 103182, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38805791

RESUMO

Rodent studies demonstrated specialized sodium chloride (NaCl) sensing neurons in the circumventricular organs, which mediate changes in sympathetic nerve activity, arginine vasopressin, thirst, and blood pressure. However, the neural pathways involved in NaCl sensing in the human brain are incompletely understood. The purpose of this pilot study was to determine if acute hypernatremia alters the functional connectivity of NaCl-sensing regions of the brain in healthy young adults. Resting-state fMRI scans were acquired in 13 participants at baseline and during a 30 min hypertonic saline infusion (HSI). We used a seed-based approach to analyze the data, focusing on the subfornical organ (SFO) and the organum vasculosum of the lamina terminalis (OVLT) as regions of interest (ROIs). Blood chemistry and perceived thirst were assessed pre- and post-infusion. As expected, serum sodium increased from pre- to post-infusion in the HSI group. The primary finding of this pilot study was that the functional connectivity between the SFO and a cluster within the OVLT increased from baseline to the late-phase of the HSI. Bidirectional connectivity changes were found with cortical regions, with some regions showing increased connectivity with sodium-sensing regions while others showed decreased connectivity. Furthermore, the functional connectivity between the SFO and the posterior cingulate cortex (a control ROI) did not change from baseline to the late-phase of the HSI. This finding indicates a distinct response within the NaCl sensing network in the human brain specifically related to acute hypernatremia that will need to be replicated in large-scale studies.

2.
ArXiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38764590

RESUMO

The smooth muscle bundles (SMBs) in the bladder act as contractile elements which enable the bladder to void effectively. In contrast to skeletal muscles, these bundles are not highly aligned, rather they are oriented more heterogeneously throughout the bladder wall. In this work, for the first time, this regional orientation of the SMBs is quantified across the whole bladder, without the need for optical clearing or cryosectioning. Immunohistochemistry staining was utilized to visualize smooth muscle cell actin in multiphoton microscopy (MPM) images of bladder smooth muscle bundles (SMBs). Feature vectors for each pixel were generated using a range of filters, including Gaussian blur, Gaussian gradient magnitude, Laplacian of Gaussian, Hessian eigenvalues, structure tensor eigenvalues, Gabor, and Sobel gradients. A Random Forest classifier was subsequently trained to automate the segmentation of SMBs in the MPM images. Finally, the orientation of SMBs in each bladder region was quantified using the CT-FIRE package. This information is essential for biomechanical models of the bladder that include contractile elements.

3.
Br J Pharmacol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794851

RESUMO

BACKGROUND AND PURPOSE: We extend the characterization of the TRPM8 antagonist VBJ103 with tests of selectivity, specificity and distribution, therapeutic efficacy of systemic administration against oxaliplatin-induced cold hyperalgesia and the impact of systemic administration on core body temperature (CBT). EXPERIMENTAL APPROACH: Selectivity at human TRPA1 and TRPV1 as well as in vitro safety profiling was determined. Effects of systemic administration of VBJ103 were evaluated in a model of oxaliplatin-induced cold hyperalgesia. Both peripheral and centrally mediated effects of VBJ103 on CBT were assessed with radiotelemetry. KEY RESULTS: VBJ103 had no antagonist activity at TRPV1 and TRPA1, but low potency TRPA1 activation. The only safety liability detected was partial inhibition of the dopamine transporter (DAT). VBJ103 delivered subcutaneously dose-dependently attenuated cold hypersensitivity in oxaliplatin-treated mice at 3, 10 and 30 mg·kg-1 (n = 7, P < 0.05). VBJ103 (30 mg·kg-1) antinociception was influenced by neither the TRPA1 antagonist HC-030031 nor the DAT antagonist GBR12909. Subcutaneous administration of VBJ103 (3, 10 and 30 mg·kg-1, but not 100 or 300 mg·kg-1, n = 7) decreased CBT (2°C). Intraperitoneal (i.p.) administration of VBJ103 (3, 10 and 30 mg·kg-1) dose-dependently decreased CBT to an extent larger than that detected with subcutaneous administration. Intracerebroventricular (i.c.v.) administration (306 nmol/1 µL; n = 5) did not alter CBT. CONCLUSIONS AND IMPLICATIONS: We achieve therapeutic efficacy with subcutaneous administration of a novel TRPM8 antagonist that attenuates deleterious influences on CBT, a side effect that has largely prevented the translation of TRPM8 as a target.

4.
J Clin Invest ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598837

RESUMO

Tissue regeneration is limited in several organs including the kidney, contributing to the high prevalence of kidney disease globally. However, evolutionary and physiological adaptive responses and the presence of renal progenitor cells suggest existing remodeling capacity. This study uncovered endogenous tissue remodeling mechanisms in the kidney that were activated by the loss of body fluid and salt and regulated by a unique niche of a minority renal cell type called the macula densa (MD). Here we identified neuronal differentiation features of MD cells that sense the local and systemic environment, secrete angiogenic, growth and extracellular matrix remodeling factors, cytokines and chemokines, and control resident progenitor cells. Serial intravital imaging, MD nerve growth factor receptor and Wnt mouse models and transcriptome analysis revealed cellular and molecular mechanisms of these MD functions. Human and therapeutic translation studies illustrated the clinical potential of MD factors including CCN1 as a urinary biomarker and therapeutic target in chronic kidney disease. The concept that a neuronally differentiated key sensory and regulatory cell type responding to organ-specific physiological inputs controls local progenitors to remodel or repair tissues may be applicable to other organs and diverse tissue regenerative therapeutic strategies.

6.
Hypertension ; 81(3): 447-455, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37671571

RESUMO

Excess dietary salt (NaCl) intake is strongly correlated with cardiovascular disease and is a major contributing factor to the pathogenesis of hypertension. NaCl-sensitive hypertension is a multisystem disorder that involves renal dysfunction, vascular abnormalities, and neurogenically-mediated increases in peripheral resistance. Despite a major research focus on organ systems and these effector mechanisms causing NaCl-induced increases in arterial blood pressure, relatively less research has been directed at elucidating how NaCl is sensed by various tissues to elicit these downstream effects. The purpose of this review is to discuss how the brain, kidney, and gastrointestinal tract sense NaCl including key cell types, the role of NaCl versus osmolality, and the underlying molecular and electrochemical mechanisms.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Humanos , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Pressão Sanguínea , Rim/metabolismo , Encéfalo/metabolismo
7.
J Physiol ; 601(23): 5241-5256, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878364

RESUMO

The role played by the transient receptor potential vanilloid 1 (TRPV1) channel on the thin fibre afferents evoking the exercise pressor reflex is controversial. To shed light on this controversy, we compared the exercise pressor reflex between newly developed TRPV1+/+ , TRPV1+/- and TRPV1-/- rats. Carotid arterial injection of capsaicin (0.5 µg), evoked significant pressor responses in TRPV1+/+ and TRPV1+/- rats, but not in TRPV1-/- rats. In acutely isolated dorsal root ganglion neurons innervating the gastrocnemius muscles, capsaicin evoked inward currents in neurons isolated from TRPV1+/+ and TRPV1+/- rats but not in neurons isolated from TRPV1-/- rats. The reflex was evoked by stimulating the tibial nerve in decerebrated rats whose femoral artery was either freely perfused or occluded. We found no difference between the reflex in the three groups of rats regardless of the patency of the femoral artery. For example, the peak pressor responses to contraction in TRPV1+/+ , TRPV1+/- and TRPV1-/- rats with patent femoral arteries averaged 17.1 ± 7.2, 18.9 ± 12.4 and 18.4 ± 8.6 mmHg, respectively. Stimulation of the tibial nerve after paralysis with pancuronium had no effect on arterial pressure, findings which indicated that the pressor responses to contraction were not caused by electrical stimulation of afferent tibial nerve axons. We also found that expression levels of acid-sensing ion channel 1 and endoperoxide 4 receptor in the L4 and 5 dorsal root ganglia were not upregulated in the TRPV1-/- rats. We conclude that TRPV1 is not needed to evoke the exercise pressor reflex in rats whose contracting muscles have either a patent or an occluded arterial blood supply. KEY POINTS: A reflex arising in contracting skeletal muscle contributes to the increases in arterial blood pressure, cardiac output and breathing evoked by exercise. The sensory arm of the reflex comprises both mechanoreceptors and metaboreceptors, of which the latter signals that blood flow to exercising muscle is not meeting its metabolic demand. The nature of the channel on the metaboreceptor sensing a mismatch between supply and demand is controversial; some believe that it is the transient receptor potential vanilloid 1 (TRPV1) channel. Using genetically engineered rats in which the TRPV1 channel is rendered non-functional, we have shown that it is not needed to evoke the metaboreflex.


Assuntos
Capsaicina , Canais de Potencial de Receptor Transitório , Animais , Ratos , Pressão Sanguínea , Capsaicina/farmacologia , Artéria Femoral/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Ratos Sprague-Dawley , Reflexo/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo
8.
Hypertension ; 80(8): 1671-1682, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37334698

RESUMO

BACKGROUND: Renal denervation lowers arterial blood pressure in both clinical populations and multiple experimental models of hypertension. This therapeutic effect is partly attributed to the removal of overactive renal sensory nerves. The TRPV1 (transient receptor potential vanilloid 1) channel is highly expressed in renal sensory nerves and detects changes in noxious and mechanosensitive stimuli, pH, and chemokines. However, the extent to which TRPV1 channels contribute to 2-kidney-1-clip (2K1C) renovascular hypertension has not been tested. METHODS: We generated a novel Trpv1-/- (TRPV1 knockout) rat using CRISPR/Cas9 and 26-bp deletion in exon 3 and induced 2K1C hypertension. RESULTS: The majority (85%) of rat renal sensory neurons retrogradely labeled from the kidney were TRPV1-positive. Trpv1-/- rats lacked TRPV1 immunofluorescence in the dorsal root ganglia, had a delayed tail-flick response to hot but not cold water, and lacked an afferent renal nerve activity response to intrarenal infusion of the TRPV1 agonist capsaicin. Interestingly, 2K1C hypertension was significantly attenuated in male Trpv1-/- versus wild-type rats. 2K1C hypertension significantly increased the depressor response to ganglionic blockade, total renal nerve activity (efferent and afferent), and afferent renal nerve activity in wild-type rats, but these responses were attenuated in male Trpv1-/- rats. 2K1C hypertension was attenuated in female rats with no differences between female strains. Finally, glomerular filtration rate was reduced by 2K1C in wild-type rats but improved in Trpv1-/- rats. CONCLUSIONS: These findings suggest that renovascular hypertension requires activation of the TRPV1 channel to elevate renal afferent and sympathetic nerve activity, reduce glomerular filtration rate, and increase arterial blood pressure.


Assuntos
Hipertensão Renovascular , Hipertensão , Canais de Potencial de Receptor Transitório , Animais , Feminino , Masculino , Ratos , Pressão Sanguínea/fisiologia , Taxa de Filtração Glomerular , Rim/inervação , Sistema Nervoso Simpático
9.
Hypertension ; 80(4): 872-881, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752103

RESUMO

BACKGROUND: Salt-sensitive hypertension in humans and experimental models is associated with higher plasma and cerebrospinal fluid sodium chloride (NaCl) concentrations. Changes in extracellular NaCl concentrations are sensed by specialized neurons in the organum vasculosum of the lamina terminalis (OVLT). Stimulation of OVLT neurons increases sympathetic nerve activity (SNA) and arterial blood pressure (ABP), whereas chronic activation produces hypertension. Therefore, the present study tested whether OVLT neuronal activity was elevated and contributed to SNA and ABP in salt-sensitive hypertension. METHODS: Male Dahl salt-sensitive (Dahl S) and Dahl salt-resistant (Dahl R) rats were fed 0.1% or 4.0% NaCl diets for 3 to 4 weeks and used for single-unit recordings of OVLT neurons or simultaneous recording of multiple sympathetic nerves during pharmacological inhibition of the OVLT. RESULTS: Plasma and cerebrospinal fluid Na+ and Cl- concentrations were higher in Dahl S rats fed 4% versus 0.1% or Dahl R rats fed either diet. In vivo single-unit recordings revealed a significantly higher discharge of NaCl-responsive OVLT neurons in Dahl S rats fed 4% versus 0.1% or Dahl R rats. Interestingly, intracarotid infusion of hypertonic NaCl evoked greater increases in OVLT neuronal discharge of Dahl S versus Dahl R rats regardless of NaCl diet. The activity of non-NaCl-responsive OVLT neurons was not different across strain or diets. Finally, inhibition of OVLT neurons by local injection of the gamma-aminobutyric acid agonist muscimol produced a greater decrease in renal SNA, splanchnic SNA, and ABP of Dahl S rats fed 4% versus 0.1% or Dahl R rats. CONCLUSIONS: A high salt diet activates NaCl-responsive OVLT neurons to increase SNA and ABP in salt-sensitive hypertension.


Assuntos
Hipertensão , Organum Vasculosum , Ratos , Animais , Humanos , Masculino , Cloreto de Sódio/farmacologia , Ratos Sprague-Dawley , Alta do Paciente , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta , Hipotálamo , Pressão Sanguínea/fisiologia
10.
Am J Physiol Heart Circ Physiol ; 323(3): H437-H448, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35867707

RESUMO

The circadian cycle impacts sympathetic nerve activity (SNA), cardiovascular hemodynamics, and renal function. Activation of renal sensory nerves by chemosensory and mechanosensory stimuli reflexively changes efferent SNA and arterial blood pressure (ABP) to maintain homeostasis. However, it is unclear to what extent circadian cycle influences reflex SNA and ABP responses to renal sensory stimuli. Renal, splanchnic, and lumbar SNA and ABP responses to intrarenal arterial infusion of bradykinin or capsaicin and elevated renal pelvic pressure were measured in male and female Sprague-Dawley rats during nighttime (wakeful/active phase) and daytime (inactive phase). Intrarenal arterial bradykinin infusion significantly increased efferent renal SNA, splanchnic SNA, and ABP but not lumbar SNA. Responses were greater during nighttime versus daytime. Similarly, intrarenal arterial capsaicin infusion significantly increased renal SNA and splanchnic SNA, and responses were again greater during nighttime. Elevated renal pelvic pressure increased renal SNA and splanchnic SNA; however, responses did not differ between daytime and nighttime. Finally, afferent renal nerve activity responses to bradykinin were not different between daytime and nighttime. Thus, renal chemokines elicit greater sympathoexcitatory responses at nighttime that cannot be attributed to differences in afferent renal nerve activity. Collectively, these data suggest that the circadian cycle alters the excitability of central autonomic networks to alter baseline SNA and ABP as well as the magnitude of visceral reflexes.NEW & NOTEWORTHY The current study discovers that the circadian cycle influences sympathetic and hemodynamic responses to activation of renal chemosensitive sensory fibers. Sympathetic responses to intrarenal bradykinin or capsaicin infusion were exaggerated during nighttime (active period), but mechanosensitive responses to elevated renal pelvic pressure were not. Importantly, renal afferent nerve responses were not different between nighttime and daytime. These data suggest that the circadian cycle modulates sympathetic responses to visceral afferent activation.


Assuntos
Bradicinina , Capsaicina , Animais , Pressão Sanguínea/fisiologia , Bradicinina/farmacologia , Capsaicina/farmacologia , Feminino , Rim/inervação , Rim/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiologia
11.
Br J Pharmacol ; 179(11): 2490-2504, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33963547

RESUMO

BACKGROUND AND PURPOSE: Reduced renal blood flow triggers activation of the renin-angiotensin-aldosterone system (RAAS) leading to renovascular hypertension. Renal vascular smooth muscle expression of the NO receptor, soluble GC (sGC), modulates the vasodilator response needed to control renal vascular tone and blood flow. Here, we tested if angiotensin II (Ang II) affects sGC expression via an AT1 receptor-forkhead box subclass O (FoxO) transcription factor dependent mechanism. EXPERIMENTAL APPROACH: Using a murine two-kidney-one-clip (2K1C) renovascular hypertension model, we measured renal artery vasodilatory function and sGC expression. Additionally, we conducted cell culture studies using rat renal pre-glomerular smooth muscle cells (RPGSMCs) to test the in vitro mechanistic effects of Ang II treatment on sGC expression and downstream function. KEY RESULTS: Contralateral, unclipped renal arteries in 2K1C mice showed increased NO-dependent vasorelaxation compared to sham control mice. Immunofluorescence studies revealed increased sGC protein expression in 2K1C contralateral renal arteries over sham controls. RPGSMCs treated with Ang II caused a significant up-regulation of sGC mRNA and protein expression as well as downstream sGC-dependent signalling. Ang II signalling effects on sGC expression occurred through an AT1 receptor and FoxO transcription factor-dependent mechanism at both the mRNA and protein expression levels. CONCLUSION AND IMPLICATIONS: Renal artery smooth muscle, in vivo and in vitro, up-regulates expression of sGC following RAAS activity. In both cases, up-regulation of sGC leads to increased downstream cGMP signalling, suggesting a previously unrecognized protective mechanism to improve renal blood flow in the uninjured contralateral renal artery. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Assuntos
Angiotensina II , Hipertensão Renovascular , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Hipertensão Renovascular/metabolismo , Rim , Masculino , Camundongos , Músculo Liso Vascular , RNA Mensageiro/metabolismo , Ratos
12.
Hypertension ; 79(1): 139-149, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34809435

RESUMO

Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense extracellular NaCl and angiotensin II concentrations to regulate body fluid homeostasis and arterial blood pressure. Lesion of the anteroventral third ventricular region or OVLT attenuates multiple forms of neurogenic hypertension. However, the extent by which OVLT neurons directly regulate sympathetic nerve activity to produce hypertension is not known. Therefore, the present study tested this hypothesis by using a multi-faceted approach including optogenetics, single-unit and multifiber nerve recordings, and chemogenetics. First, optogenetic activation of OVLT neurons in conscious Sprague-Dawley rats (250-400 g) produced frequency-dependent increases in arterial blood pressure and heart rate. These responses were not altered by the vasopressin receptor antagonist (ß-mercapto-ß,ß-cyclopentamethylenepropionyl1,O-me-Tyr2,Arg8)-vasopressin but eliminated by the ganglionic blocker chlorisondamine. Second, optogenetic activation of OVLT neurons significantly elevated renal, splanchnic, and lumbar sympathetic nerve activity. Third, single-unit recordings revealed optogenetic activation of the OVLT significantly increased the discharge of bulbospinal, sympathetic neurons in the rostral ventrolateral medulla. Lastly, chronic chemogenetic activation of OVLT neurons for 7 days significantly increased 24-hour fluid intake and mean arterial blood pressure. When the 24-hour fluid intake was clamped at baseline intakes, chemogenetic activation of OVLT neurons still produced a similar increase in arterial blood pressure. Neurogenic pressor activity assessed by the ganglionic blocker chlorisondamine was greater at 7 days of OVLT activation versus baseline. Collectively, these findings indicate that acute or chronic activation of OVLT neurons produces a sympathetically mediated hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Neurônios/fisiologia , Organum Vasculosum/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Frequência Cardíaca/fisiologia , Hemodinâmica/fisiologia , Masculino , Optogenética , Ratos , Ratos Sprague-Dawley
13.
J Neurophysiol ; 126(2): 668-679, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259043

RESUMO

Activation of renal sensory nerves by chemo- and mechanosensitive stimuli produces changes in efferent sympathetic nerve activity (SNA) and arterial blood pressure (ABP). Anesthesia and sex influence autonomic function and cardiovascular hemodynamics, but it is unclear to what extent anesthesia and sex impact SNA and ABP responses to renal sensory stimuli. We measured renal, splanchnic, and lumbar SNA and ABP in male and female Sprague-Dawley rats during contralateral renal infusion of capsaicin and bradykinin or during elevation in renal pelvic pressure. Responses were evaluated with a decerebrate preparation or Inactin, urethane, or isoflurane anesthesia. Intrarenal arterial infusion of capsaicin (0.1-30.0 µM) increased renal SNA, splanchnic SNA, or ABP but decreased lumbar SNA in the Inactin group. Intrarenal arterial infusion of bradykinin (0.1-30.0 µM) increased renal SNA, splanchnic SNA, and ABP but decreased lumbar SNA in the Inactin group. Elevated renal pelvic pressure (0-20 mmHg, 30 s) significantly increased renal SNA and splanchnic SNA but not lumbar SNA in the Inactin group. In marked contrast, SNA and ABP responses to every renal stimulus were severely blunted in the urethane and decerebrate groups and absent in the isoflurane group. In the Inactin group, the magnitude of SNA responses to chemo- and mechanosensory stimuli were not different between male and female rats. Thus, chemo- and mechanosensitive stimuli produce differential changes in renal, splanchnic, and lumbar SNA. Experimentally, future investigations should consider Inactin anesthesia to examine sympathetic and hemodynamic responses to renal sensory stimuli.NEW & NOTEWORTHY The findings highlight the impact of anesthesia, and to a lesser extent sex, on sympathetic efferent and hemodynamic responses to chemosensory and mechanosensory renal stimuli. Sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses were present in Inactin-anesthetized rats but largely absent in decerebrate, isoflurane, or urethane preparations. Renal chemosensory stimuli differentially changed SNA: renal and splanchnic SNA increased, but lumbar SNA decreased. Future investigations should consider Inactin anesthesia to study SNA and hemodynamic responses to renal sensory nerve activation.


Assuntos
Anestésicos Gerais/farmacologia , Hemodinâmica , Rim/inervação , Neurônios Eferentes/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Capsaicina/farmacologia , Feminino , Isoflurano/farmacologia , Rim/efeitos dos fármacos , Rim/fisiologia , Masculino , Neurônios Eferentes/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fármacos do Sistema Sensorial/farmacologia , Fatores Sexuais , Sistema Nervoso Simpático/efeitos dos fármacos , Tiopental/análogos & derivados , Tiopental/farmacologia , Tato , Uretana/farmacologia
14.
Kidney Int ; 99(1): 102-116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818518

RESUMO

The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway upregulates key cellular defenses. Clinical trials are utilizing pharmacologic Nrf2 inducers such as bardoxolone methyl to treat chronic kidney disease, but Nrf2 activation has been linked to a paradoxical increase in proteinuria. To understand this effect, we examined genetically engineered mice with elevated Nrf2 signaling due to reduced expression of the Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1). These Keap1FA/FA mice lacked baseline proteinuria but exhibited increased proteinuria in experimental models evoked by adriamycin, angiotensin II, or protein overload. After injury, Keap1FA/FA mice had increased glomerulosclerosis, nephrin disruption and shedding, podocyte injury, foot process effacement, and interstitial fibrosis. Keap1FA/FA mice also had higher daytime blood pressures and lower heart rates measured by radiotelemetry. Conversely, Nrf2 knockout mice were protected from proteinuria. We also examined the pharmacologic Nrf2 inducer CDDO-Im. Compared to angiotensin II alone, the combination of angiotensin II and CDDO-Im significantly increased proteinuria, a phenomenon not observed in Nrf2 knockout mice. This effect was not accompanied by additional increases in blood pressure. Finally, Nrf2 was found to be upregulated in the glomeruli of patients with focal segmental glomerulosclerosis, diabetic nephropathy, fibrillary glomerulonephritis, and membranous nephropathy. Thus, our studies demonstrate that Nrf2 induction in mice may exacerbate proteinuria in chronic kidney disease.


Assuntos
Fator 2 Relacionado a NF-E2 , Insuficiência Renal Crônica , Animais , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteinúria/genética , Insuficiência Renal Crônica/genética
15.
Am J Physiol Heart Circ Physiol ; 320(1): H117-H132, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216622

RESUMO

Elevated renal afferent nerve (ARNA) activity or dysfunctional reno-renal reflexes via altered ARNA sensitivity contribute to hypertension and chronic kidney disease. These nerves contain mechano- and chemosensitive fibers that respond to ischemia, changes in intrarenal pressures, and chemokines. Most studies have utilized various anesthetized preparations and exclusively male animals to characterize ARNA responses. Therefore, this study assessed the impact of anesthesia, sex, and circadian period on ARNA responses and sensitivity. Multifiber ARNA recordings were performed in male and female Sprague-Dawley rats (250-400 g) and compared across decerebrate versus Inactin, isoflurane, and urethane anesthesia groups. Intrarenal artery infusion of capsaicin (0.1-50.0 µM, 0.05 mL) produced concentration-dependent increases in ARNA; however, the ARNA sensitivity was significantly greater in decerebrate versus Inactin, isoflurane, and urethane groups. Increases in renal pelvic pressure (0-30 mmHg, 30 s) produced pressure-dependent increases in ARNA; however, ARNA sensitivity was again greater in decerebrate and Inactin groups versus isoflurane and urethane. Acute renal artery occlusion (30 s) increased ARNA, but responses did not differ across groups. Analysis of ARNA responses to increased pelvic pressure between male and female rats revealed significant sex differences only in isoflurane and urethane groups. ARNA responses to intrarenal capsaicin infusion were significantly blunted at nighttime versus daytime; however, ARNA responses to increased pelvic pressure or renal artery occlusion were not different between daytime and nighttime. These results demonstrate that ARNA sensitivity is greatest in decerebrate and Inactin-anesthetized groups but was not consistently influenced by sex.NEW & NOTEWORTHY We determined the impact of anesthesia, sex, and circadian cycle on renal afferent nerve (ARNA) sensitivity to chemical and mechanical stimuli. ARNA sensitivity to renal capsaicin infusion was greatest in decerebrate > Inactin > urethane or isoflurane groups. Elevated renal pelvic pressure significantly increased ARNA; decerebrate and Inactin groups exhibited the greatest ARNA sensitivity. Sex differences in renal afferent responses were not consistently observed. Circadian cycle altered chemosensory but not mechanosensory responses.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Capsaicina/farmacologia , Ritmo Circadiano , Rim/irrigação sanguínea , Neurônios Aferentes/efeitos dos fármacos , Fármacos do Sistema Sensorial/farmacologia , Animais , Estado de Descerebração , Relação Dose-Resposta a Droga , Feminino , Hemodinâmica/efeitos dos fármacos , Isoflurano/farmacologia , Masculino , Pressão , Ratos Sprague-Dawley , Fatores Sexuais , Tiopental/análogos & derivados , Tiopental/farmacologia , Fatores de Tempo , Uretana/farmacologia
16.
Physiol Rep ; 8(18): e14581, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32965797

RESUMO

Older adults have reduced fluid intake and impaired body fluid and electrolyte regulation. Older female adults exhibit exaggerated exercise blood pressure (BP) responses, which is associated with an increased risk of adverse cardiovascular events. However, it is unclear if dysregulated body fluid homeostasis contributes to altered exercise BP responses in older female adults. We tested the hypothesis that short-term water deprivation (WD) increases exercise BP responses in older female adults. Fifteen female adults (eight young [25 ± 6 years] and seven older [65 ± 6 years]) completed two experimental conditions in random crossover fashion; a euhydration control condition and a stepwise reduction in water intake over three days concluding with a 16-hr WD period. During both trials, beat-to-beat BP (photoplethysmography) and heart rate (electrocardiogram) were continuously assessed during rest, handgrip exercise (30% MVC), and post-exercise ischemia (metaboreflex isolation). At screening, older compared to young female adults had greater systolic and diastolic BP (p ≤ .02). Accelerometer-assessed habitual physical activity was not different between groups (p = .65). Following WD, 24-hr urine flow rate decreased, whereas thirst, urine specific gravity, and plasma osmolality increased (condition: p < .05 for all), but these WD-induced changes were not different between age groups (interaction: p ≥ .31 for all). Resting systolic and diastolic BP values were higher in older compared to young adults (p < .01 for both), but were not different between experimental conditions (p ≥ .20). In contrast to our hypothesis, WD was associated with attenuated systolic BP responses during handgrip exercise (post hoc: p < .01) and post-exercise ischemia (post hoc: p = .03) in older, but not young, female adults. These data suggest that reduced water intake-induced challenges to body fluid homeostasis do not contribute to exaggerated exercise BP responses in post-menopausal female adults.


Assuntos
Envelhecimento/fisiologia , Pressão Sanguínea , Exercício Físico , Reflexo , Privação de Água/fisiologia , Adulto , Idoso , Ingestão de Líquidos , Feminino , Humanos , Pessoa de Meia-Idade , Equilíbrio Hidroeletrolítico
17.
Kidney Int ; 98(2): 355-365, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32600826

RESUMO

Acute kidney injury (AKI) is a risk factor for the development of chronic kidney disease (CKD). One mechanism for this phenomenon is renal microvascular rarefaction and subsequent chronic impairment in perfusion. However, diagnostic tools to monitor the renal microvasculature in a noninvasive and quantitative manner are still lacking. Ultrasound super-resolution imaging is an emerging technology that can identify microvessels with unprecedented resolution. Here, we applied this imaging technique to identify microvessels in the unilateral ischemia-reperfusion injury mouse model of AKI-to-CKD progression in vivo. Kidneys from 21 and 42 day post- ischemia-reperfusion injury, the contralateral uninjured kidneys, and kidneys from sham-operated mice were examined by ultrasound super-resolution and histology. Renal microvessels were successfully identified by this imaging modality with a resolution down to 32 µm. Renal fibrosis was observed in all kidneys with ischemia-reperfusion injury and was associated with a significant reduction in kidney size, cortical thickness, relative blood volume, and microvascular density as assessed by this imaging. Tortuosity of the cortical microvasculature was also significantly increased at 42 days compared to sham. These vessel density measurements correlated significantly with CD31 immunohistochemistry (R2=0.77). Thus, ultrasound super-resolution imaging provides unprecedented resolution and is capable of noninvasive quantification of renal vasculature changes associated with AKI-to-CKD progression in mice. Hence, this technique could be a promising diagnostic tool for monitoring progressive kidney disease.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Injúria Renal Aguda/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Rim/diagnóstico por imagem , Camundongos , Microvasos/diagnóstico por imagem , Traumatismo por Reperfusão/diagnóstico por imagem
18.
Can J Cardiol ; 36(5): 712-720, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389344

RESUMO

The sympathetic nervous system plays a pivotal role in the long-term regulation of arterial blood pressure through the ability of the central nervous system to integrate neurohumoral signals and differentially regulate sympathetic neural input to specific end organs. Part 1 of this review will discuss neural mechanisms of salt-sensitive hypertension, obesity-induced hypertension, and the ability of prior experiences to sensitize autonomic networks. Part 2 of this review focuses on new therapeutic advances to treat resistant hypertension including renal denervation and carotid baroactivation. Both advances lower arterial blood pressure by reducing sympathetic outflow. We discuss potential mechanisms and areas of future investigation to target the sympathetic nervous system.


Assuntos
Hipertensão/fisiopatologia , Hipertensão/terapia , Sistema Nervoso Simpático/fisiopatologia , Animais , Vias Autônomas/fisiologia , Barorreflexo/fisiologia , Humanos , Rim/inervação , Obesidade/fisiopatologia , Pressorreceptores/fisiologia , Sódio na Dieta/efeitos adversos , Simpatectomia
19.
Am J Physiol Heart Circ Physiol ; 318(5): H1346-H1355, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302491

RESUMO

Renovascular hypertension is characterized by activation of the renin-angiotensin-aldosterone system, blunted natriuretic responses, and elevated sympathetic nerve activity. Excess dietary salt intake exaggerates arterial blood pressure (ABP) in multiple models of experimental hypertension. The present study tested whether a high-salt diet exaggerated ABP and vascular dysfunction in a 2-kidney, 1-clip (2K1C) murine model. Male C57BL/6J mice (8-12 wk) were randomly assigned, and fed a 0.1% or 4.0% NaCl diet, and instrumented with telemetry units to measure ABP. Then, the 2K1C model was produced by placing a cuff around the right renal artery. Systolic, diastolic, and mean ABP were significantly higher in mice fed 4.0% vs. 0.1% NaCl at 1 wk but not after 3 wk. Interestingly, 2K1C hypertension progressively increased arterial pulse pressure in both groups; however, the magnitude was significantly greater in mice fed 4.0% vs. 0.1% NaCl at 3 wk. Moreover, pulse wave velocity was significantly greater in 2K1C mice fed 4.0% vs. 0.1% NaCl diet or sham-operated mice fed either diet. Histological assessment of aortas indicated no structural differences among groups. Finally, endothelium-dependent vasodilation was significantly and selectively attenuated in the aorta but not mesenteric arteries of 2K1C mice fed 4.0% NaCl vs. 0.1% NaCl or sham-operated control mice. The findings suggest that dietary salt loading transiently exaggerates 2K1C renovascular hypertension but promotes chronic aortic stiffness and selective aortic vascular dysfunction.NEW & NOTEWORTHY High dietary salt exaggerates hypertension in multiple experimental models. Here we demonstrate that a high-salt diet produces a greater increase in arterial blood pressure at 1 wk after induction of 2-kidney, 1-clip (2K1C) hypertension but not at 3 wk. Interestingly, 2K1C mice fed a high-salt diet displayed an exaggerated pulse pressure, elevated pulse wave velocity, and reduced endothelium-dependent vasodilation of the aorta but not mesenteric arteries. These findings suggest that dietary salt may interact with underlying cardiovascular disease to promote selective vascular dysfunction and aortic stiffness.


Assuntos
Hipertensão Renovascular/etiologia , Cloreto de Sódio na Dieta/efeitos adversos , Rigidez Vascular , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aorta/fisiopatologia , Pressão Sanguínea , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cloreto de Sódio na Dieta/toxicidade , Vasoconstrição
20.
J Neurosci ; 40(10): 2069-2079, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32005766

RESUMO

The organum vasculosum of the lamina terminalis (OVLT) contains NaCl-sensitive neurons to regulate thirst, neuroendocrine function, and autonomic outflow. The OVLT also expresses the angiotensin II (AngII) type1 receptor, and AngII increases Fos expression in OVLT neurons. The present study tested whether individual OVLT neurons sensed both NaCl and AngII to regulate thirst and body fluid homeostasis. A multifaceted approach, including in vitro whole-cell patch recordings, in vivo single-unit recordings, and optogenetic manipulation of OVLT neurons, was used in adult, male Sprague Dawley rats. First, acute intravenous infusion of hypertonic NaCl or AngII produced anatomically distinct patterns of Fos-positive nuclei in the OVLT largely restricted to the dorsal cap versus vascular core, respectively. However, in vitro patch-clamp recordings indicate 66% (23 of 35) of OVLT neurons were excited by bath application of both hypertonic NaCl and AngII. Similarly, in vivo single-unit recordings revealed that 52% (23 of 44) of OVLT neurons displayed an increased discharge to intracarotid injection of both hypertonic NaCl and AngII. In marked contrast to Fos immunoreactivity, neuroanatomical mapping of Neurobiotin-filled cells from both in vitro and in vivo recordings revealed that NaCl- and AngII-responsive neurons were distributed throughout the OVLT. Next, optogenetic excitation of OVLT neurons stimulated thirst but not salt appetite. Conversely, optogenetic inhibition of OVLT neurons attenuated thirst stimulated by hypernatremia or elevated AngII but not hypovolemia. Collectively, these findings provide the first identification of individual OVLT neurons that respond to both elevated NaCl and AngII concentrations to regulate thirst and body fluid homeostasis.SIGNIFICANCE STATEMENT Body fluid homeostasis requires the integration of neurohumoral signals to coordinate behavior, neuroendocrine function, and autonomic function. Extracellular NaCl concentrations and the peptide hormone angiotensin II (AngII) are two major neurohumoral signals that regulate body fluid homeostasis. Herein, we present the first compelling evidence that individual neurons located in the organum vasculosum of the lamina terminalis detect both NaCl and AngII. Furthermore, optogenetic interrogations demonstrate that these neurons play a pivotal role in the regulation of thirst stimulated by NaCl and AngII. These novel observations lay the foundation for future investigations for how such inputs as well as others converge onto unique organum vasculosum of the lamina terminalis neurons to coordinate body fluid homeostasis and contribute to disorders of fluid balance.


Assuntos
Angiotensina II/metabolismo , Hipernatremia/metabolismo , Neurônios/fisiologia , Organum Vasculosum/fisiologia , Sede/fisiologia , Angiotensina II/farmacologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Equilíbrio Hidroeletrolítico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...