Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 13(2): 777-790, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35284188

RESUMO

Fluorescent proteins are excited by light that is polarized parallel to the dipole axis of the chromophore. In two-photon microscopy, polarized light is used for excitation. Here we reveal surprisingly strong polarization sensitivity in a class of genetically encoded, GPCR-based neurotransmitter sensors. In tubular structures such as dendrites, this effect led to a complete loss of membrane signal in dendrites running parallel to the polarization direction of the excitation beam. To reduce the sensitivity to dendritic orientation, we designed an optical device that generates interleaved pulse trains of orthogonal polarization. The passive device, which we inserted in the beam path of an existing two-photon microscope, removed the strong direction bias from fluorescence and second-harmonic (SHG) images. We conclude that for optical measurements of transmitter concentration with GPCR-based sensors, orthogonally polarized excitation is essential.

2.
J Synchrotron Radiat ; 29(Pt 1): 230-238, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985440

RESUMO

High-resolution X-ray nanotomography is a quantitative tool for investigating specimens from a wide range of research areas. However, the quality of the reconstructed tomogram is often obscured by noise and therefore not suitable for automatic segmentation. Filtering methods are often required for a detailed quantitative analysis. However, most filters induce blurring in the reconstructed tomograms. Here, machine learning (ML) techniques offer a powerful alternative to conventional filtering methods. In this article, we verify that a self-supervised denoising ML technique can be used in a very efficient way for eliminating noise from nanotomography data. The technique presented is applied to high-resolution nanotomography data and compared to conventional filters, such as a median filter and a nonlocal means filter, optimized for tomographic data sets. The ML approach proves to be a very powerful tool that outperforms conventional filters by eliminating noise without blurring relevant structural features, thus enabling efficient quantitative analysis in different scientific fields.

3.
Mater Today Bio ; 13: 100169, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34927043

RESUMO

Doses of irradiation above 25 â€‹kGy are known to cause irreversible mechanical decay in bone tissue. However, the impact of irradiation doses absorbed in a clinical setting on the mechanical properties of bone remains unclear. In daily clinical practice and research, patients and specimens are exposed to irradiation due to diagnostic imaging tools, with doses ranging from milligray to Gray. The aim of this study was to investigate the influence of irradiation at these doses ranges on the mechanical performance of bone independent of inter-individual bone quality indices. Therefore, cortical bone specimens (n â€‹= â€‹10 per group) from a selected organ donor were irradiated at doses of milligray, Gray and kilogray (graft tissue sterilization) at five different irradiation doses. Three-point bending was performed to assess mechanical properties in the study groups. Our results show a severe reduction in mechanical performance (work to fracture: 50.29 â€‹± â€‹11.49 Nmm in control, 14.73 â€‹± â€‹1.84 Nmm at 31.2 â€‹kGy p â€‹≤ â€‹0.05) at high irradiation doses of 31.2 â€‹kGy, which correspond to graft tissue sterilization or synchrotron imaging. In contrast, no reduction in mechanical properties were detected for doses below 30 â€‹Gy. These findings are further supported by fracture surface texture imaging (i.e. more brittle fracture textures above 31.2 â€‹kGy). Our findings show that high radiation doses (≥31.2 â€‹kGy) severely alter the mechanical properties of bone. Thus, irradiation of this order of magnitude should be taken into account when mechanical analyses are planned after irradiation. However, doses of 30 â€‹Gy and below, which are common for clinical and experimental imaging (e.g., radiation therapy, DVT imaging, CT imaging, HR-pQCT imaging, DXA measurements, etc.), do not alter the mechanical bending-behavior of bone.

4.
ACS Nano ; 15(1): 455-467, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33404232

RESUMO

Bone continuously adapts to its mechanical environment by structural reorganization to maintain mechanical strength. As the adaptive capabilities of bone are portrayed in its nano- and microstructure, the existence of dark and bright osteons with contrasting preferential collagen fiber orientation (longitudinal and oblique-angled, respectively) points at a required tissue heterogeneity that contributes to the excellent fracture resistance mechanisms in bone. Dark and bright osteons provide an exceptional opportunity to deepen our understanding of how nanoscale tissue properties influence and guide fracture mechanisms at larger length scales. To this end, a comprehensive structural, compositional, and mechanical assessment is performed using circularly polarized light microscopy, synchrotron nanocomputed tomography, focused ion beam/scanning electron microscopy, quantitative backscattered electron imaging, Fourier transform infrared spectroscopy, and nanoindentation testing. To predict how the mechanical behavior of osteons is affected by shifts in collagen fiber orientation, finite element models are generated. Fundamental disparities between both osteon types are observed: dark osteons are characterized by a higher degree of mineralization along with a higher ratio of inorganic to organic matrix components that lead to higher stiffness and the ability to resist plastic deformation under compression. On the contrary, bright osteons contain a higher fraction of collagen and provide enhanced ductility and energy dissipation due to lower stiffness and hardness.


Assuntos
Colágeno , Ósteon , Fenômenos Biomecânicos , Osso e Ossos , Matriz Extracelular , Resistência à Tração
5.
J Bone Miner Res ; 34(8): 1461-1472, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30913317

RESUMO

Bone fracture risk is influenced by bone quality, which encompasses bone's composition as well as its multiscale organization and architecture. Aging and disease deteriorate bone quality, leading to reduced mechanical properties and higher fracture incidence. Largely unexplored is how bone quality and mechanical competence progress during longitudinal bone growth. Human femoral cortical bone was acquired from fetal (n = 1), infantile (n = 3), and 2- to 14-year-old cases (n = 4) at the mid-diaphysis. Bone quality was assessed in terms of bone structure, osteocyte characteristics, mineralization, and collagen orientation. The mechanical properties were investigated by measuring tensile deformation at multiple length scales via synchrotron X-ray diffraction. We find dramatic differences in mechanical resistance with age. Specifically, cortical bone in 2- to 14-year-old cases exhibits a 160% greater stiffness and 83% higher strength than fetal/infantile cases. The higher mechanical resistance of the 2- to 14-year-old cases is associated with advantageous bone quality, specifically higher bone volume fraction, better micronscale organization (woven versus lamellar), and higher mean mineralization compared with fetal/infantile cases. Our study reveals that bone quality is superior after remodeling/modeling processes convert the primary woven bone structure to lamellar bone. In this cohort of female children, the microstructural differences at the femoral diaphysis were apparent between the 1- to 2-year-old cases. Indeed, the lamellar bone in 2- to 14-year-old cases had a superior structural organization (collagen and osteocyte characteristics) and composition for resisting deformation and fracture than fetal/infantile bone. Mechanistically, the changes in bone quality during longitudinal bone growth lead to higher fracture resistance because collagen fibrils are better aligned to resist tensile forces, while elevated mean mineralization reinforces the collagen scaffold. Thus, our results reveal inherent weaknesses of the fetal/infantile skeleton signifying its inferior bone quality. These results have implications for pediatric fracture risk, as bone produced at ossification centers during children's longitudinal bone growth could display similarly weak points. © 2019 American Society for Bone and Mineral Research.


Assuntos
Envelhecimento , Densidade Óssea , Desenvolvimento Ósseo , Fêmur/crescimento & desenvolvimento , Adolescente , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Microtomografia por Raio-X
6.
Bone ; 112: 187-193, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29679732

RESUMO

BACKGROUND: The osteocytic lacunar network is considered to be an integral player in the regulation of bone homeostasis, and reduction in osteocytes is associated with reduced bone strength. Here, we analyzed site-specific patterns in osteocyte characteristics and matrix composition in the cortical compartment of the femoral neck to reveal the structural basis of its fragility. METHODS: Cross-sections of the human femoral neck - one of the most common fracture sites - were acquired from 12 female cadavers (age 34-86 years) and analyzed with backscattered scanning electron microscopy and high-resolution micro-computed tomography (µ-CT). The 2D/3D density and size of the osteocyte lacunae as well as bone mineral density distribution (BMDD) were measured in two regions subject to different biomechanical loads in vivo: the inferomedial (medial) region (habitually highly loaded in compression) and the superolateral (lateral) region (lower habitual loading intensity). Using quantitative polarized light microscopy, collagen fiber orientation was quantified in these two regions, accordingly. RESULTS: In 2D measurements, the inferomedial region displayed lower mineralization heterogeneity, 19% higher osteocyte lacunar density (p = 0.005), but equal lacunar size compared to the superolateral region. 3D measurements confirmed a significantly higher osteocyte lacunar density in the inferomedial region (p = 0.015). Osteocyte lacunar density decreased in aged individuals, and inter-site differences were reduced. Site-specific osteocyte characteristics were not accompanied by changes in collagen fiber orientation. CONCLUSIONS: Since osteocyte characteristics may provide valuable insights into bone mechanical competence, the variations in osteocyte properties might reflect the increased fracture susceptibility of the superolateral neck.


Assuntos
Densidade Óssea/fisiologia , Osso Cortical/diagnóstico por imagem , Colo do Fêmur/diagnóstico por imagem , Osteócitos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Osso Cortical/patologia , Feminino , Colo do Fêmur/patologia , Humanos , Pessoa de Meia-Idade , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...