Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nat Methods ; 20(12): 2048-2057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012321

RESUMO

To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Cabeça , Neuroimagem , Razão Sinal-Ruído
2.
Magn Reson Med ; 90(6): 2572-2591, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667645

RESUMO

PURPOSE: Developing a general framework with a novel stochastic offset strategy for the design of optimized RF pulses and time-varying spatially non-linear ΔB0 shim array fields for restricted slice excitation and refocusing with refined magnetization profiles within the intervals of the fixed voxels. METHODS: Our framework uses the decomposition property of the Bloch equations to enable joint design of RF-pulses and shim array fields for restricted slice excitation and refocusing with auto-differentiation optimization. Bloch simulations are performed independently on orthogonal basis vectors, Mx, My, and Mz, which enables designs for arbitrary initial magnetizations. Requirements for refocusing pulse designs are derived from the extended phase graph formalism obviating time-consuming sub-voxel isochromatic simulations to model the effects of crusher gradients. To refine resultant slice-profiles because of voxelwise optimization functions, we propose an algorithm that stochastically offsets spatial points at which loss is computed during optimization. RESULTS: We first applied our proposed design framework to standard slice-selective excitation and refocusing pulses in the absence of non-linear ΔB0 shim array fields and compared them against pulses designed with Shinnar-Le Roux algorithm. Next, we demonstrated our technique in a simulated setup of fetal brain imaging in pregnancy for restricted-slice excitation and refocusing of the fetal brain. CONCLUSIONS: Our proposed framework for optimizing RF pulse and time-varying spatially non-linear ΔB0 shim array fields achieve high fidelity restricted-slice excitation and refocusing for fetal MRI, which could enable zoomed fast-spin-echo-MRI and other applications.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Imagens de Fantasmas
3.
Magn Reson Med ; 90(6): 2592-2607, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582214

RESUMO

PURPOSE: A 128-channel receive-only array for brain imaging at 7 T was simulated, designed, constructed, and tested within a high-performance head gradient designed for high-resolution functional imaging. METHODS: The coil used a tight-fitting helmet geometry populated with 128 loop elements and preamplifiers to fit into a 39 cm diameter space inside a built-in gradient. The signal-to-noise ratio (SNR) and parallel imaging performance (1/g) were measured in vivo and simulated using electromagnetic modeling. The histogram of 1/g factors was analyzed to assess the range of performance. The array's performance was compared to the industry-standard 32-channel receive array and a 64-channel research array. RESULTS: It was possible to construct the 128-channel array with body noise-dominated loops producing an average noise correlation of 5.4%. Measurements showed increased sensitivity compared with the 32-channel and 64-channel array through a combination of higher intrinsic SNR and g-factor improvements. For unaccelerated imaging, the 128-channel array showed SNR gains of 17.6% and 9.3% compared to the 32-channel and 64-channel array, respectively, at the center of the brain and 42% and 18% higher SNR in the peripheral brain regions including the cortex. For R = 5 accelerated imaging, these gains were 44.2% and 24.3% at the brain center and 86.7% and 48.7% in the cortex. The 1/g-factor histograms show both an improved mean and a tighter distribution by increasing the channel count, with both effects becoming more pronounced at higher accelerations. CONCLUSION: The experimental results confirm that increasing the channel count to 128 channels is beneficial for 7T brain imaging, both for increasing SNR in peripheral brain regions and for accelerated imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Imagens de Fantasmas , Neuroimagem/métodos , Desenho de Equipamento
4.
NMR Biomed ; 36(11): e5002, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439129

RESUMO

The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1 + uniformity, power efficiency, and/or specific absorption rate efficiency. B1 + homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.


Assuntos
Medula Cervical , Adulto , Humanos , Medula Cervical/diagnóstico por imagem , Imagens de Fantasmas , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído
5.
Brain Stimul ; 16(4): 1021-1031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37307872

RESUMO

PURPOSE: Multichannel Transcranial Magnetic Stimulation (mTMS) [1] is a novel non-invasive brain stimulation technique allowing multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. To enable simultaneous mTMS and MR imaging, we have designed and constructed a whole-head 28-channel receive-only RF coil at 3T. METHODS: A helmet-shaped structure was designed considering a specific layout for a mTMS system with holes for positioning the TMS units next to the scalp. Diameter of the TMS units defined the diameter of RF loops. The placement of the preamplifiers was designed to minimize possible interactions and to allow straightforward positioning of the mTMS units around the RF coil. Interactions between TMS-MRI were analyzed for the whole-head system extending the results presented in previous publications [2]. Both SNR- and g-factors maps were obtained to compare the imaging performance of the coil with commercial head coils. RESULTS: Sensitivity losses for the RF elements containing TMS units show a well-defined spatial pattern. Simulations indicate that the losses are predominantly caused by eddy currents on the coil wire windings. The average SNR performance of the TMSMR 28-channel coil is about 66% and 86% of the SNR of the 32/20-channel head coil respectively. The g-factor values of the TMSMR 28-channel coil are similar to the 32-channel coil and significantly better than the 20-channel coil. CONCLUSION: We present the TMSMR 28-channel coil, a head RF coil array to be integrated with a multichannel 3-axisTMS coil system, a novel tool that will enable causal mapping of human brain function.


Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Humanos , Encéfalo/diagnóstico por imagem , Estimulação Magnética Transcraniana/métodos , Imageamento por Ressonância Magnética/métodos , Técnicas Estereotáxicas , Couro Cabeludo , Imagens de Fantasmas , Desenho de Equipamento
6.
J Magn Reson ; 350: 107424, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001194

RESUMO

Every magnetic resonance imaging (MRI) device requires an electronic control system that handles pulse sequences and signal detection and processing. Here we provide details on the architecture and performance of MaRCoS, a MAgnetic Resonance COntrol System developed by an open international community of low-field MRI researchers. MaRCoS is inexpensive and can handle cycle-accurate sequences without hard length limitations, rapid bursts of events, and arbitrary waveforms. It has also been readily adapted to meet the requirements of the various academic and private institutions participating in its development. We describe the MaRCoS hardware, firmware and software that enable all of the above, including a Python-based graphical user interface for pulse sequence implementation, data processing and image reconstruction.

7.
PLoS One ; 18(3): e0281332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996066

RESUMO

Diffusion MRI classically uses gradient fields that vary linearly in space to encode the diffusion of water molecules in the signal magnitude by tempering its intensity. In spin ensembles, a presumably equal number of particles move in positive and negative direction, resulting in approximately zero change in net phase. Hence, in classical diffusion weighted MRI with a linear gradient field, the phase does not carry any information as the incoherent motion of the spins only impacts the magnitude of the signal. Conversely, when the linear gradient field is replaced with one that varies quadratically over space, the diffusion of water molecules in anisotropic media does give rise to a change in net phase and preserves large portion of the signal around the saddle point of the gradient field. In this work, the phase evolution of anisotropic fibre phantoms in the presence of quadratic gradient fields was studied in Monte Carlo simulations and diffusion MRI experiments. The simulations confirm the dependence of the phase change on the degree of anisotropy of the media and the diffusion weighting, as predicted by the derived analytic model. First MR experiments show a phase change depending on the diffusion time in an anisotropic synthetic fibre phantom, and approximately zero phase change for the experiment repeated in an isotropic agar phantom. As predicted by the analytic model, an increase of the diffusion time by approximately a factor of two leads to an increase of approximately a factor of two in the signal phase.


Assuntos
Imagem de Difusão por Ressonância Magnética , Água , Anisotropia , Imagem de Difusão por Ressonância Magnética/métodos , Imagens de Fantasmas , Difusão
8.
bioRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798276

RESUMO

The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency coil solutions for ultra-high field imaging; however, very few commercial and research 7 Tesla radiofrequency coils currently exist for the spinal cord, and in particular those with parallel transmit capabilities. This work presents the design, testing and validation of a pTx/Rx coil for the human neck and cervical/upper-thoracic spinal cord. The pTx portion is composed of 8 dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made of 20 semi-adaptable overlapping loops to produce high Signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B 1 + uniformity, power efficiency and/or specific absorption rate (SAR) efficiency. B 1 + homogeneity, SNR and g-factor was evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper-thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.

9.
Magn Reson Med ; 89(4): 1401-1417, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36441743

RESUMO

PURPOSE: Introduce Shimming Toolbox ( https://shimming-toolbox.org), an open-source software package for prototyping new methods and performing static, dynamic, and real-time B0 shimming as well as B1 shimming experiments. METHODS: Shimming Toolbox features various field mapping techniques, manual and automatic masking for the brain and spinal cord, B0 and B1 shimming capabilities accessible through a user-friendly graphical user interface. Validation of Shimming Toolbox was demonstrated in three scenarios: (i) B0 dynamic shimming in the brain at 7T using custom AC/DC coils, (ii) B0 real-time shimming in the spinal cord at 3T, and (iii) B1 static shimming in the spinal cord at 7T. RESULTS: The B0 dynamic shimming of the brain at 7T took about 10 min to perform. It showed a 47% reduction in the standard deviation of the B0 field, associated with noticeable improvements in geometric distortions in EPI images. Real-time dynamic xyz-shimming in the spinal cord took about 5 min and showed a 30% reduction in the standard deviation of the signal distribution. B1 static shimming experiments in the spinal cord took about 10 min to perform and showed a 40% reduction in the coefficient of variation of the B1 field. CONCLUSION: Shimming Toolbox provides an open-source platform where researchers can collaborate, prototype and conveniently test B0 and B1 shimming experiments. Future versions will include additional field map preprocessing techniques, optimization algorithms, and compatibility across multiple MRI manufacturers.


Assuntos
Imageamento por Ressonância Magnética , Software , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
10.
Magn Reson Med ; 89(4): 1660-1673, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36441786

RESUMO

PURPOSE: An MRI scanner is equipped with global shim systems for shimming one region of interest (ROI) only. However, it often fails to reach state-of-the-art when shimming two isolated regions of interest simultaneously, even though the two-area shimming can be essential in scan scenarios, such as bilateral breasts or dyadic brains. To address these challenges, a hybrid active and passive local shimming technique is proposed to simultaneously shim two isolated region-of-interest areas within the whole FOV. METHODS: A local passive shimming system is constructed by optimized bilateral ferromagnetic chip arrays to compensate for the magnet's significant high-order B0 inhomogeneities at the boundary of the manufacturer's specified homogeneous volume, thus locally improving the available FOV. The local active shimming consists of 40-channel DC loops powered by 64-channel current amplifiers. With the optimized current distribution, active shimming can correct the residual low-order B0 inhomogeneities and subject-specific field inhomogeneities. In addition, active shimming is used to homogenize the center frequencies of the two regions. RESULTS: With the implementation of the hybrid active and passive local shimming, the 95% peak-to-peak was reduced from 1.92 to 1.12 ppm by 41.7%, and RMS decreased from 0.473 to 0.255 ppm by 46.1% in a two-phantom experiment. The volume ratio containing MR voxels within a 0.5-ppm frequency span increased from 64.3% to 81.3% by 26.3%. CONCLUSION: The proposed hybrid active and passive local shimming technique uses both passive and active local shimming, and it can efficiently shim two areas simultaneously, which is an unmet need for a commercial MRI scanner.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
11.
NMR Biomed ; 36(5): e4873, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347826

RESUMO

T1 relaxation times of the 14 T1 phantom spheres that make up the standard International Society for Magnetic Resonance in Medicine (ISMRM)/National Institute of Standards and Technology (NIST) system phantom are reported at 7 T. T1 values of six of the 14 T1 spheres at 7 T (with T1 > 270 ms) have been reported previously, but, to the best of our knowledge, not all of the T1s of the 14 T1 spheres at 7 T have been reported before. Given the increasing number of 7-T MRI systems in clinical settings and the increasing need for T1 phantoms that cover a wide range of T1 relaxation times to evaluate rapid T1 mapping techniques at 7 T, it is of high interest to obtain accurate T1 values for all the ISMRM/NIST T1 spheres at 7 T. In this work, T1 relaxation time was measured on a 7-T MRI scanner using an inversion-recovery spin-echo pulse sequence and derived by curve fitting to a signal equation that exhibits insensitivity to B 1 + inhomogeneity. Day-to-day reproducibility was within 0.4% and differences between two different RF coils within 1.5%. T1s of a subset of the 14 spheres were also measured by NMR at 7 T for comparison, and the T1 results were consistent between the MRI and NMR measurements. T1 measurements performed at 3 T on the same 14 spheres using the same sequence and fitting method yielded good agreement (mean percentage difference of -0.4%) with the reference T1 values available from the NIST, reflecting the accuracy of the reported technique despite being without the standard phantom housing. We found that the T1 values of all 14 NiCl2 spheres are consistently lower at 7 T than at 3 T. Although our results were well reproduced, this study represents initial work to quantify the 7-T T1 values of all 14 NIST T1 spheres outside of the standard housing and does not warrant reproducibility of the ISMRM/NIST system phantom as a whole. A future study to assess the T1 values of a version of the ISMRM/NIST system phantom that fits inside typical commercial coils at 7 T will be very helpful. Nonetheless, the details on our acquisition and curve-fitting methods reported here allow the T1 measurements to be reproduced elsewhere. The T1 values of all 14 spheres reported here will be valuable for the development of quantitative MR fingerprinting and rapid T1 mapping for a large variety of research projects, not only in neuroimaging but also in body MRI, musculoskeletal MRI, and gadolinium contrast-enhanced MRI, each of which is concerned with much shortened T1.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Valores de Referência
12.
NMR Biomed ; 36(1): e4825, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36097704

RESUMO

PURPOSE: To describe the current properties and capabilities of an open-source hardware and software package that is being developed by many sites internationally with the aim of providing an inexpensive yet flexible platform for low-cost MRI. METHODS: This article describes three different setups from 50 to 360 mT in different settings, all of which used the MaRCoS console for acquiring data, and different types of software interface (custom-built GUI or Pulseq overlay) to acquire it. RESULTS: Images are presented both from phantoms and in vivo from healthy volunteers to demonstrate the image quality that can be obtained from the MaRCoS hardware/software interfaced to different low-field magnets. CONCLUSIONS: The results presented here show that a number of different sequences commonly used in the clinic can be programmed into an open-source system relatively quickly and easily, and can produce good quality images even at this early stage of development. Both the hardware and software will continue to develop, and it is an aim of this article to encourage other groups to join this international consortium.


Assuntos
Benchmarking , Espectroscopia de Ressonância Magnética , Humanos
13.
Magn Reson Med ; 88(6): 2548-2563, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36093989

RESUMO

PURPOSE: To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality. METHODS: FIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field. RESULTS: Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. CONCLUSION: FIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improves T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Calibragem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
14.
Neuroimage ; 261: 119498, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917918

RESUMO

Increased static field inhomogeneities are a burden for human brain MRI at Ultra-High-Field. In particular they cause enhanced Echo-Planar image distortions and signal losses due to magnetic susceptibility gradients at air-tissue interfaces in the subject's head. In the past decade, Multi-Coil Arrays (MCA) have been proposed to shim the field in the brain better than the 2nd or 3rd order Spherical Harmonic (SH) coils usually offered by MRI manufacturers. Here we present a novel MCA, named SCOTCH, optimized for whole brain shimming. Based on a cylindrical structure, it features several layers of small coils whose shape, size and location are found from a principal component analysis of ideal stream functions computed from an internal 100-brain fieldmap database. From an Open-Access external database of 126 brains, our SCOTCH implementation is shown to be equivalent to a partial 7th-order SH system with unlimited power, outperforming all known existing MCA prototypes. This result is further confirmed by a low-cost  30-cm diameter SCOTCH prototype built with 48 coils on 3 layers, and tested on 7 volunteers at 7T with a parallel-transmit RF coil made to be inserted in SCOTCH. Echo-Planar images of the subject brains before and after SCOTCH shimming show large signal recoveries, especially in the prefrontal cortex.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Magnetismo , Ondas de Rádio
15.
Magn Reson Med ; 88(3): 1180-1197, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678236

RESUMO

PURPOSE: To introduce wave-encoded acquisition and reconstruction techniques for highly accelerated EPI with reduced g-factor penalty and image artifacts. THEORY AND METHODS: Wave-EPI involves application of sinusoidal gradients during the EPI readout, which spreads the aliasing in all spatial directions, thereby taking better advantage of 3D coil sensitivity profiles. The amount of voxel spreading that can be achieved by the wave gradients during the short EPI readout period is constrained by the slew rate of the gradient coils and peripheral nerve stimulation monitor. We propose to use a "half-cycle" sinusoidal gradient to increase the amount of voxel spreading that can be achieved while respecting the slew and stimulation constraints. Extending wave-EPI to multi-shot acquisition minimizes geometric distortion and voxel blurring at high in-plane resolutions, while structured low-rank regularization mitigates shot-to-shot phase variations. To address gradient imperfections, we propose to use different point spread functions for the k-space lines with positive and negative polarities, which are calibrated with a FLEET-based reference scan. RESULTS: Wave-EPI enabled whole-brain single-shot gradient-echo (GE) and multi-shot spin-echo (SE) EPI acquisitions at high acceleration factors at 3T and was combined with g-Slider encoding to boost the SNR level in 1 mm isotropic diffusion imaging. Relative to blipped-CAIPI, wave-EPI reduced average and maximum g-factors by up to 1.21- and 1.37-fold at Rin × Rsms  = 3 × 3, respectively. CONCLUSION: Wave-EPI allows highly accelerated single- and multi-shot EPI with reduced g-factor and artifacts and may facilitate clinical and neuroscientific applications of EPI by improving the spatial and temporal resolution in functional and diffusion imaging.


Assuntos
Imagem Ecoplanar , Aumento da Imagem , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
16.
Muscle Nerve ; 66(2): 206-211, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621349

RESUMO

INTRODUCTION/AIMS: Magnetic resonance imaging (MRI) of peripheral nerves can provide image-based anatomical information and quantitative measurement. The aim of this pilot study was to investigate the feasibility of high-resolution anatomical and quantitative MRI assessment of sciatic nerve fascicles in patients with Charcot-Marie-Tooth (CMT) 1A using 7T field strength. METHODS: Six patients with CMT1A underwent imaging on a high-gradient 7T MRI scanner using a 28-channel knee coil. Two high-resolution axial images were simultaneously acquired using a quantitative double-echo in steady-state (DESS) sequence. By comparing the two DESS echoes, T2 and apparent diffusion coefficient (ADC) maps were calculated. The cross-sectional areas and mean T2 and ADC were measured in individual fascicles of the tibial and fibular (peroneal) portions of the sciatic nerve at its bifurcation and 10 mm distally. Disease severity was measured using Charcot-Marie-Tooth Examination Score (CMTES) version 2 and compared to imaging findings. RESULTS: We demonstrated the feasibility of 7T MRI of the proximal sciatic nerve in patients with CMT1A. Using the higher field, it was possible to measure individual bundles in the tibial and fibular divisions of the sciatic nerve. There was no apparent correlation between diffusion measures and disease severity in this small cohort. DISCUSSION: This pilot study indicated that high-resolution MRI that allows for combined anatomical and quantitative imaging in one scan is feasible at 7T field strengths and can be used to investigate the microstructure of individual nerve fascicles.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/patologia , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Nervo Isquiático/diagnóstico por imagem , Nervo Isquiático/patologia
17.
Magn Reson Med ; 88(3): 1419-1433, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35605167

RESUMO

PURPOSE: To extend the coverage of brain coil arrays to the neck and cervical-spine region to enable combined head and neck imaging at 7 Tesla (T) ultra-high field MRI. METHODS: The coil array structures of a 64-channel receive coil and a 16-channel transmit coil were merged into one anatomically shaped close-fitting housing. Transmit characteristics were evaluated in a B1+ -field mapping study and an electromagnetic model. Receive SNR and the encoding capability for accelerated imaging were evaluated and compared with a commercially available 7 T brain array coil. The performance of the head-neck array coil was demonstrated in human volunteers using high-resolution accelerated imaging. RESULTS: In the brain, the SNR matches the commercially available 32-channel brain array and showed improvements in accelerated imaging capabilities. More importantly, the constructed coil array improved the SNR in the face area, neck area, and cervical spine by a factor of 1.5, 3.4, and 5.2, respectively, in regions not covered by 32-channel brain arrays at 7 T. The interelement coupling of the 16-channel transmit coil ranged from -14 to -44 dB (mean = -19 dB, adjacent elements <-18 dB). The parallel 16-channel transmit coil greatly facilitates B1+ field shaping required for large FOV neuroimaging at 7 T. CONCLUSION: This new head-neck array coil is the first demonstration of a device of this nature used for combined full-brain, head-neck, and cervical-spine imaging at 7 T. The array coil is well suited to provide large FOV images, which potentially improves ultrahigh field neuroimaging applications for clinical settings.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Vértebras Cervicais , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído
18.
MAGMA ; 35(6): 943-951, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35511312

RESUMO

OBJECT: Improve shimming capabilities of ultra-high field systems, with addition of an accessible low-complexity B0 shim array for head MRI at 7 T. MATERIALS AND METHODS: An eight channel B0 shim coil array was designed as a tradeoff between shimming improvement and construction complexity, to provide an easy to use shim array that can be employed with the standard 7 T head coil. The array was interfaced using an open-source eight-channel shim amplifier rack. Improvements in field homogeneity for whole-brain and slice-based shimming were compared to standard second-order shimming, and to more complex higher order dynamic shimming and shim arrays with 32 and 48 channels. RESULTS: The eight-channel shim array provided 12% improvement in whole brain static shimming and provided 33% improvement when using slice-based shimming. With this, the eight-channel array performed similar to third-order dynamic shimming (without the need for higher order eddy current compensation). More complex shim arrays with 32 and 48 channels performed better, but require a dedicated RF coil. DISCUSSION: The designed eight-channel shim array provides a low-complexity and low-cost approach for improving B0 field shimming on an ultra-high field system. In both static and dynamic shimming, it provides improved B0 homogeneity over standard shimming.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ondas de Rádio , Software
19.
Magn Reson Med ; 87(2): 1074-1092, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34632626

RESUMO

PURPOSE: To test an integrated "AC/DC" array approach at 7T, where B0 inhomogeneity poses an obstacle for functional imaging, diffusion-weighted MRI, MR spectroscopy, and other applications. METHODS: A close-fitting 7T 31-channel (31-ch) brain array was constructed and tested using combined Rx and ΔB0 shim channels driven by a set of rapidly switchable current amplifiers. The coil was compared to a shape-matched 31-ch reference receive-only array for RF safety, signal-to-noise ratio (SNR), and inter-element noise correlation. We characterize the coil array's ability to provide global and dynamic (slice-optimized) shimming using ΔB0 field maps and echo planar imaging (EPI) acquisitions. RESULTS: The SNR and average noise correlation were similar to the 31-ch reference array. Global and slice-optimized shimming provide 11% and 40% improvements respectively compared to baseline second-order spherical harmonic shimming. Birdcage transmit coil efficiency was similar for the reference and AC/DC array setups. CONCLUSION: Adding ΔB0 shim capability to a 31-ch 7T receive array can significantly boost 7T brain B0 homogeneity without sacrificing the array's rdiofrequency performance, potentially improving ultra-high field neuroimaging applications that are vulnerable to off-resonance effects.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
20.
NMR Biomed ; 35(1): e4621, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609036

RESUMO

MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B0 spatial nonuniformity and lipid artifacts from tissues surrounding the brain. Array coils that multiplex RF-receive and B0 -shim electrical currents (AC/DC mixing) over the same conductive loops provide many degrees of freedom to improve B0 uniformity and reduce lipid artifacts. AC/DC coils are highly efficient due to compact design, requiring low shim currents (<2 A) that can be switched fast (0.5 ms) with high interscan reproducibility (10% coefficient of variation for repeat measurements). We measured four tumor patients and five volunteers at 3 T and show that using AC/DC coils in addition to the vendor-provided second-order spherical harmonics shim provides 19% narrower spectral linewidth, 6% higher SNR, and 23% less lipid content for unrestricted field-of-view MRSI, compared with the vendor-provided shim alone. We demonstrate that improvement in MRSI data quality led to 2HG maps with higher contrast-to-noise ratio for tumors that coincide better with the FLAIR-enhancing lesions in mutant IDH glioma patients. Smaller Cramér-Rao lower bounds for 2HG quantification are obtained in tumors by AC/DC shim, corroborating with simulations that predicted improved accuracy and precision for narrower linewidths. AC/DC coils can be used synergistically with optimized acquisition schemes to improve metabolic imaging for precision oncology of glioma patients. Furthermore, this methodology has broad applicability to other neurological disorders and neuroscience.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glutaratos/análise , Isocitrato Desidrogenase/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...