Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 67(6): 1656-1664, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28141500

RESUMO

Five strains, designated WS 4672T, WS 4998, WS 4992T, WS 4997 and WS 5000, isolated from bovine raw milk formed two individual groups in a phylogenetic analysis. The most similar species on the basis of 16S rRNA gene sequences were Pseudomonas azotoformans IAM 1603T, Pseudomonas gessardii CIP 105469T and Pseudomonas libanensis CIP 105460T showing 99.7-99.6 % similarity. Using rpoD gene sequences Pseudomonas veronii LMG 17761T (93.3 %) was most closely related to strain WS 4672T and Pseudomonas libanensis CIP 105460T to strain WS 4992T (93.3 %). The five strains could be differentiated from their closest relatives and from each other by phenotypic and chemotaxonomic characterization and ANIb values calculated from draft genome assemblies. ANIb values of strains WS 4992T and WS4671T to the closest relatives are lower than 90 %. The major cellular polar lipids of both strains are phosphatidylethanolamine, phosphatidylglycerol, a phospholipid and diphosphatidylglycerol, and their major quinone is Q-9. The DNA G+C content of strains WS 4992T and WS 4672T were 60.0  and 59.7  mol%, respectively. Based on these genotypic and phenotypic traits two novel species of the genus Pseudomonas are proposed: Pseudomonas lactis sp. nov. [with type strain WS 4992T (=DSM 29167T=LMG 28435T) and the additional strains WS 4997 and WS 5000], and Pseudomonasparalactis sp. nov. [with type strain WS 4672T (=DSM 29164T=LMG 28439T) and additional strain WS 4998].


Assuntos
Leite/microbiologia , Filogenia , Pseudomonas/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Bovinos , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Quinonas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Int J Food Microbiol ; 211: 57-65, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26173200

RESUMO

The refrigerated storage of raw milk selects for psychrotolerant microorganisms, many of which produce peptidases and lipases. Some of these enzymes are heat resistant and are not sufficiently inactivated by pasteurisation or even ultra-high temperature (UHT) treatment. In the current study, 20 different raw cow's milk samples from single farms and dairy bulk tanks were analysed close to delivery to the dairies or close to processing in the dairy for their cultivable microbiota as well as the lipolytic and proteolytic potential of the isolated microorganisms. Altogether, 2906 isolates have been identified and assigned to 169 species and 61 genera. Pseudomonas, Lactococcus and Acinetobacter were the most abundant genera making up 62% of all isolates, whereas 46 genera had an abundance of <1% and represent only 6.6%. Of all isolates, 18% belong to hitherto unknown species, indicating that a large fraction of the milk microbiota is still unexplored. The potential of the isolates to produce lipases or peptidases followed in many cases a genus or group specific pattern. All isolates identified as members of the genus Pseudomonas exhibited mainly lipolytic and proteolytic activity or solely proteolytic activity. On the other hand, nearly all isolates of the genus Acinetobacter were lipolytic but not proteolytic. Only 37% of all tested lactic acid bacteria (LAB) showed enzymatic activity at 6 °C and the type of activity was proteolytic in 97% of these cases.


Assuntos
Bactérias/enzimologia , Bactérias/isolamento & purificação , Microbiota , Leite/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , Bovinos , Feminino , Lipase/genética , Lipase/metabolismo , Leite/química , Pseudomonas/isolamento & purificação
3.
Int J Food Microbiol ; 166(2): 270-9, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23973839

RESUMO

Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus groups, were strongly proteolytic, whereas thermophilic strains displayed generally a low enzymatic activity and thus spoilage potential. Cytotoxicity was only detected in B. cereus, suggesting that the risk of food poisoning by aerobic, thermoresistant spore-formers outside of the B. cereus group is rather low.


Assuntos
Bactérias Aeróbias/fisiologia , Indústria de Laticínios , Manipulação de Alimentos , Microbiologia de Alimentos , Animais , Bactérias Aeróbias/classificação , Bactérias Aeróbias/enzimologia , Bactérias Aeróbias/isolamento & purificação , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Biodiversidade , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Laticínios/microbiologia , Temperatura Alta , Leite/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Esporos Bacterianos/química , Esporos Bacterianos/classificação , Esporos Bacterianos/isolamento & purificação , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...