Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biometeorol ; 64(12): 2019-2032, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32860106

RESUMO

Climate change can alter the habitat suitability of invasive species and promote their establishment. The highly polyphagous brown marmorated stinkbug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is native to East Asia and invasive in Europe and North America, damaging a wide variety of fruit and vegetable crops. In Switzerland, crop damage and increasing populations have been observed since 2017 and related to increasing temperatures. We studied the climatic suitability, population growth, and the number of generations under present and future climate conditions for H. halys in Switzerland, using a modified version of the bioclimatic model package CLIMEX. To address the high topographic variability in Switzerland, model simulations were based on climate data of high spatial resolution (approx. 2 km), which significantly increased their explanatory power, and identified many more climatically suitable areas in comparison to previous models. The validation of the CLIMEX model using observational records collected in a citizen science initiative between 2004 and 2019 revealed that more than 15 years after its accidental introduction, H. halys has colonised nearly all bioclimatic suitable areas in Switzerland and there is limited potential for range expansion into new areas under present climate conditions. Simulations with climate change scenarios suggest an extensive range expansion into higher altitudes, an increase in generations per year, an earlier start of H. halys activity in spring and a prolonged period for nymphs to complete development in autumn. A permanent shift from one to two generations per year and the associated population growth of H. halys may result in increasing crop damages in Switzerland. These results highlight the need for monitoring the spread and population development in the north-western part of Switzerland and higher altitudes of the valleys of the south.


Assuntos
Mudança Climática , Heterópteros , Animais , Europa (Continente) , América do Norte , Suíça
3.
Int J Biometeorol ; 62(4): 621-630, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29218449

RESUMO

Accumulated growing degree-days (aGDD) are widely used to predict phenological stages of plants and insects. It has been shown in the past that the best predictive performance is obtained when aGDD are computed from hourly temperature data. As the latter are not always available, models of diurnal temperature changes are often employed to retrieve the required information from data of daily minimum and maximum temperatures. In this study, we examine the performance of a well-known model of hourly temperature variations in the context of a spatial assessment of aGDD. Specifically, we examine whether a generic calibration of such a temperature model is sufficient to infer in a reliable way spatial patterns of key phenological stages across the complex territory of Switzerland. Temperature data of a relatively small number of meteorological stations is used to obtain a generic model parameterization, which is first compared with site-specific calibrations. We show that, at the local scale, the predictive skill of the generic model does not significantly differ from that of the site-specific models. We then show that for aGDD up to 800 °C d (on a base temperature of 10 °C), phenological dates predicted with aGDD obtained from estimated hourly temperature data are within ± 3 days of dates estimated on the basis of observed hourly temperatures. This suggests the generic calibration of hourly temperature models is indeed a valid approach for pre-processing temperature data in regional studies of insect and plant phenology.


Assuntos
Modelos Teóricos , Temperatura , Calibragem , Estações do Ano , Análise Espacial , Suíça
4.
PLoS One ; 7(4): e35723, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22539997

RESUMO

Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature--the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045-2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70-100%. The risk of an additional third generation will increase from presently 0-2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of plant protection strategies to maintain their sustainability.


Assuntos
Mudança Climática , Mariposas/fisiologia , Animais , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Fotoperíodo , Estudos Prospectivos , Reprodução , Estações do Ano , Temperatura
5.
J Econ Entomol ; 101(4): 1341-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18767746

RESUMO

In high-value crops such as apple, Malus X domestica (Borkh.), insecticidal pest control is of high relevance. The use of resistant apple cultivars can increase the sustainability of pest management in apple orchards. Besides variation in plant chemistry that may influence plant resistance by antibiosis or antixenosis, plant growth characteristics also can affect plant susceptibility to pests such as aphids. Variable susceptibility to the apple aphid, Aphis pomi De Geer (Hemiptera: Aphididae), has been described for different apple cultivars. These observations were based on phenotypic surveys and no information on genetically based apple resistance to A. pomi is yet available. The objective of this study was to relate shoot growth characteristics with aphid population development, and to assess the genetic background of apple antibiosis-based resistance to A. pomi by quantitative trait loci (QTL) analysis. Aphid population development was repeatedly studied in the field in sleeve cages attached to 200 apple trees of different genotypes. Aphid population development was positively correlated to shoot length and growth, and it also was affected by climatic conditions. Indications for antibiosis-based resistance to A. pomi remained weak in the studied apple genotypes, and the only detected putative QTL on linkage group 11 of'Fiesta' apples was not stable for the different replications of the experiment. This lack of quantifiable resistance may be partly explained by environmental conditions related to aphid development in sleeve cages.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita , Imunidade Inata/genética , Malus/parasitologia , Brotos de Planta/parasitologia , Animais , Clima , Genótipo , Malus/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Crescimento Demográfico , Locos de Características Quantitativas
6.
J Econ Entomol ; 101(1): 81-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18330120

RESUMO

Monitoring systems based on traps with female attractants are expected to enhance forecasting of insect population size and damage. The optimal placement of such traps should match the small-scale distribution of ovipositing females. In the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), fruit infestation takes place in proximity to the oviposition site. We characterized the within-tree distribution of codling moth infestations and the size of uninfested fruit based on a survey of 40,000 apples (Malus spp.) from trees belonging to 160 different apple genotypes and growing in two different environments. Each tree was subdivided into 12 sectors, considering canopy aspect (north, east, south, and west) and canopy height (bottom, middle, and top). This study revealed that fruit infestation by the first but not by the second generation of larvae correlated significantly with canopy aspect. Similarly, fruit size differed significantly between the north- and the south-facing tree side for the period of infestation by the first but not by the second larval generation. Significantly lower fruit infestation was observed on the north- compared with the south- or east-facing tree side for the first generation. A significant influence of canopy height on larval infestation was observed in three of eight assessments, in which the middle height level showed the highest infestations. Significant differences in within-tree distribution of codling moth infestation suggest that oviposition preference is guided by nonrandom factors including microclimate, fruit phenology, and wind direction. These cultivar-independent findings should be considered in future monitoring systems that focus on female codling moth.


Assuntos
Frutas/parasitologia , Malus/parasitologia , Mariposas/fisiologia , Oviposição/fisiologia , Folhas de Planta/fisiologia , Animais , Ecossistema , Feminino , Frutas/crescimento & desenvolvimento , Controle de Insetos , Larva , Masculino , Malus/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...