Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetol Metab Syndr ; 13(1): 11, 2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33485386

RESUMO

BACKGROUND: The daily peak in dopaminergic neuronal activity at the area of the biological clock (hypothalamic suprachiasmatic nuclei [SCN]) is diminished in obese/insulin resistant vs lean/insulin sensitive animals. The impact of targeted lesioning of dopamine (DA) neurons specifically at the area surrounding (and that communicate with) the SCN (but not within the SCN itself) upon glucose metabolism, adipose and liver lipid gene expression, and cardiovascular biology in normal laboratory animals has not been investigated and was the focus of this study. METHODS: Female Sprague-Dawley rats received either DA neuron neurotoxic lesion by bilateral intra-cannula injection of 6-hydroxydopamine (2-4 µg/side) or vehicle treatment at the area surrounding the SCN at 20 min post protriptyline ip injection (20 mg/kg) to protect against damage to noradrenergic and serotonergic neurons. RESULTS: At 16 weeks post-lesion relative to vehicle treatment, peri-SCN area DA neuron lesioning increased weight gain (34.8%, P < 0.005), parametrial and retroperitoneal fat weight (45% and 90% respectively, P < 0.05), fasting plasma insulin, leptin and norepinephrine levels (180%, 71%, and 40% respectively, P < 0.05), glucose tolerance test area under the curve (AUC) insulin (112.5%, P < 0.05), and insulin resistance (44%-Matsuda Index, P < 0.05) without altering food consumption during the test period. Such lesion also induced the expression of several lipid synthesis genes in adipose and liver and the adipose lipolytic gene, hormone sensitive lipase in adipose (P < 0.05 for all). Liver monocyte chemoattractant protein 1 (a proinflammatory protein associated with metabolic syndrome) gene expression was also significantly elevated in peri-SCN area dopaminergic lesioned rats. Peri-SCN area dopaminergic neuron lesioned rats were also hypertensive (systolic BP rose from 157 ± 5 to 175 ± 5 mmHg, P < 0.01; diastolic BP rose from 109 ± 4 to 120 ± 3 mmHg, P < 0.05 and heart rate increase from 368 ± 12 to 406 ± 12 BPM, P < 0.05) and had elevated plasma norepinephrine levels (40% increased, P < 0.05) relative to controls. CONCLUSIONS: These findings indicate that reduced dopaminergic neuronal activity in neurons at the area of and communicating with the SCN contributes significantly to increased sympathetic tone and the development of metabolic syndrome, without effect on feeding.

2.
Endocrinol Diabetes Metab ; 3(3): e00139, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32704560

RESUMO

INTRODUCTION: Within the ventromedial hypothalamus (VMH), glucose inhibitory (GI) neurons sense hypoglycaemia while glucose excitatory (GE) neurons sense hyperglycaemia to initiate counter control mechanisms under normal conditions. However, potential electrophysiological alterations of these two neuronal types in vivo in insulin-resistant states have never been simultaneously fully documented. Further, the anti-diabetic effect of dopamine agonism on this VMH system under insulin resistance has not been studied. METHODS: This study examined the impact of a high-fat diet (HFD) on in vivo electrophysiological recordings from VMH GE and GI neurons and the ability of circadian-timed dopamine agonist therapy to reverse any adverse effect of the HFD on such VMH activities and peripheral glucose metabolism. RESULTS: HFD significantly inhibited VMH GE neuronal electrophysiological response to local hyperglycaemia (36.3%) and augmented GI neuronal excitation response to local hypoglycaemia (47.0%). Bromocriptine (dopamine agonist) administration at onset of daily activity (but not during the daily sleep phase) completely reversed both VMH GE and GI neuronal aberrations induced by HFD. Such timed treatment also normalized glucose intolerance and insulin resistance. These VMH and peripheral glucose metabolism effects of circadian-timed bromocriptine may involve its known effect to reduce elevated VMH noradrenergic activity in insulin-resistant states as local VMH administration of norepinephrine was observed to significantly inhibit VMH GE neuronal sensing of local hyperglycaemia in insulin-sensitive animals on regular chow diet (52.4%). CONCLUSIONS: HFD alters VMH glucose sensing in a manner that potentiates hyperglycaemia and this effect on the VMH can be reversed by appropriately circadian-timed dopamine agonist administration.

3.
Cell Rep ; 27(13): 3733-3740.e3, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242407

RESUMO

The retinas of rabbits and rodents have directionally selective (DS) retinal ganglion cells that convey directional signals through the lateral geniculate nucleus (LGN) of the thalamus to the primary visual cortex (V1). Notably, the function and synaptic impact in V1 of these directional LGN signals are unknown. Here we measured, in awake rabbits, the synaptic impact generated in V1 by individual LGN DS neurons. We show that these neurons make fast and strong connections in layers 4 and 6, with postsynaptic effects that are similar to those made by LGN concentric neurons, the main thalamic drivers of V1. By contrast, the synaptic impact of LGN DS neurons on superficial cortical layers was not detectable. These results suggest that LGN DS neurons activate a cortical column by targeting the main cortical input layers and that the role of DS input to superficial cortical layers is likely to be weak and/or modulatory.


Assuntos
Corpos Geniculados/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Córtex Visual/metabolismo , Vias Visuais/metabolismo , Animais , Corpos Geniculados/citologia , Neurônios/citologia , Coelhos , Córtex Visual/citologia , Vias Visuais/citologia
4.
J Neurosci ; 37(26): 6342-6358, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28559382

RESUMO

Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40-50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times.SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40-50 ms. Here, in the corticogeniculate visual system of awake rabbits, we investigate the functional significance of this axonal diversity, and the effects of shifting alert/nonalert brain states on corticogeniculate processing. We show that axonal conduction times are strongly related to multiple visual response properties, suggesting a continuum of visual responsiveness spanning the spectrum of corticogeniculate axonal conduction times. We also show that transitions between awake brain states powerfully affect corticogeniculate processing, in some ways more strongly than in layer 4.


Assuntos
Nível de Alerta/fisiologia , Corpos Geniculados/fisiologia , Condução Nervosa/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Axônios/fisiologia , Feminino , Vias Neurais/fisiologia , Neurônios/fisiologia , Coelhos , Campos Visuais , Vigília/fisiologia
5.
J Neurophysiol ; 114(2): 1172-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26108950

RESUMO

Sensory adaptation serves to adjust awake brains to changing environments on different time scales. However, adaptation has been studied traditionally under anesthesia and for short time periods. Here, we demonstrate in awake rabbits a novel type of sensory adaptation that persists for >1 h and acts on visual thalamocortical neurons and their synapses in the input layers of the visual cortex. Following prolonged visual stimulation (10-30 min), cells in the dorsal lateral geniculate nucleus (LGN) show a severe and prolonged reduction in spontaneous firing rate. This effect is bidirectional, and prolonged visually induced response suppression is followed by a prolonged increase in spontaneous activity. The reduction in thalamic spontaneous activity following prolonged visual activation is accompanied by increases in 1) response reliability, 2) signal detectability, and 3) the ratio of visual signal/spontaneous activity. In addition, following such prolonged activation of an LGN neuron, the monosynaptic currents generated by thalamic impulses in layer 4 of the primary visual cortex are enhanced. These results demonstrate that in awake brains, prolonged sensory stimulation can have a profound, long-lasting effect on the information conveyed by thalamocortical inputs to the visual cortex.


Assuntos
Adaptação Fisiológica/fisiologia , Corpos Geniculados/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Animais , Eletroencefalografia , Feminino , Microeletrodos , Estimulação Luminosa/métodos , Coelhos , Fatores de Tempo
6.
J Neurophysiol ; 112(2): 362-73, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24790175

RESUMO

Directionally selective (DS) neurons are found in the retina and lateral geniculate nucleus (LGN) of rabbits and rodents, and in rabbits, LGN DS cells project to primary visual cortex. Here, we compare visual response properties of LGN DS neurons with those of layer 4 simple cells, most of which show strong direction/orientation selectivity. These populations differed dramatically, suggesting that DS cells may not contribute significantly to the synthesis of simple receptive fields: 1) whereas the first harmonic component (F1)-to-mean firing rate (F0) ratios of LGN DS cells are strongly nonlinear, those of simple cells are strongly linear; 2) whereas LGN DS cells have overlapped ON/OFF subfields, simple cells have either a single ON or OFF subfield or two spatially separate subfields; and 3) whereas the preferred directions of LGN DS cells are closely tied to the four cardinal directions, the directional preferences of simple cells are more evenly distributed. We further show that directional selectivity in LGN DS neurons is strongly enhanced by alertness via two mechanisms, 1) an increase in responses to stimulation in the preferred direction, and 2) an enhanced suppression of responses to stimuli moving in the null direction. Finally, our simulations show that these two consequences of alertness could each serve, in a vector-based population code, to hasten the computation of stimulus direction when rabbits become alert.


Assuntos
Corpos Geniculados/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Vigília , Animais , Feminino , Corpos Geniculados/citologia , Condução Nervosa , Coelhos , Campos Visuais , Percepção Visual
7.
J Neurosci ; 34(11): 3888-900, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24623767

RESUMO

Awake mammals can switch between alert and nonalert brain states hundreds of times per day. Here, we study the effects of alertness on two cell classes in layer 4 of primary visual cortex of awake rabbits: presumptive excitatory "simple" cells and presumptive fast-spike inhibitory neurons (suspected inhibitory interneurons). We show that in both cell classes, alertness increases the strength and greatly enhances the reliability of visual responses. In simple cells, alertness also increases the temporal frequency bandwidth, but preserves contrast sensitivity, orientation tuning, and selectivity for direction and spatial frequency. Finally, alertness selectively suppresses the simple cell responses to high-contrast stimuli and stimuli moving orthogonal to the preferred direction, effectively enhancing mid-contrast borders. Using a population coding model, we show that these effects of alertness in simple cells--enhanced reliability, higher gain, and increased suppression in orthogonal orientation-could play a major role at increasing the speed of cortical feature detection.


Assuntos
Potenciais de Ação/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Vigília/fisiologia , Animais , Sensibilidades de Contraste/fisiologia , Feminino , Modelos Lineares , Modelos Neurológicos , Orientação/fisiologia , Coelhos , Vias Visuais/fisiologia
8.
J Neurosci ; 33(28): 11372-89, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843510

RESUMO

Extracellular recordings were obtained from two cell classes in layer 4 of the awake rabbit primary visual cortex (V1): putative inhibitory interneurons [suspected inhibitory interneurons (SINs)] and putative excitatory cells with simple receptive fields. SINs were identified solely by their characteristic response to electrical stimulation of the lateral geniculate nucleus (LGN, 3+ spikes at >600 Hz), and simple cells were identified solely by receptive field structure, requiring spatially separate ON and/or OFF subfields. Notably, no cells met both criteria, and we studied 62 simple cells and 33 SINs. Fourteen cells met neither criterion. These layer 4 populations were markedly distinct. Thus, SINs were far less linear (F1/F0 < 1), more broadly tuned to stimulus orientation, direction, spatial and temporal frequency, more sensitive to contrast, had much higher spontaneous and stimulus-driven activity, and always had spatially overlapping ON/OFF receptive subfields. SINs responded to drifting gratings with increased firing rates (F0) for all orientations and directions. However, some SINs showed a weaker modulated (F1) response sharply tuned to orientation and/or direction. SINs responded at shorter latencies than simple cells to stationary stimuli, and the responses of both populations could be sustained or transient. Transient simple cells were more sensitive to contrast than sustained simple cells and their visual responses were more frequently suppressed by high contrasts. Finally, cross-correlation between LGN and SIN spike trains confirmed a fast and precisely timed monosynaptic connectivity, supporting the notion that SINs are well suited to provide a fast feedforward inhibition onto targeted cortical populations.


Assuntos
Interneurônios/fisiologia , Inibição Neural/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/citologia , Córtex Visual/fisiologia , Vigília/fisiologia , Animais , Estimulação Elétrica/métodos , Eletrodos Implantados , Feminino , Coelhos
9.
J Neurosci ; 31(48): 17480-7, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22131409

RESUMO

The effects of different EEG brain states on spontaneous firing of cortical populations are not well understood. Such state shifts may occur frequently under natural conditions, and baseline firing patterns can impact neural coding (e.g., signal-to-noise ratios, sparseness of coding). Here, we examine the effects of spontaneous transitions from alert to nonalert awake EEG states in the rabbit visual cortex (5 s before and after the state-shifts). In layer 4, we examined putative spiny neurons and fast-spike GABAergic interneurons; in layer 5, we examined corticotectal neurons. We also examined the behavior of retinotopically aligned dorsal lateral geniculate nucleus (LGNd) neurons, usually recorded simultaneously with the above cortical populations. Despite markedly reduced firing and sharply increased bursting in the LGNd neurons following the transition to the nonalert state, little change occurred in the spiny neurons of layer 4. However, fast-spike neurons of layer 4 showed a paradoxical increase in firing rates as thalamic drive decreased in the nonalert state, even though some of these cells received potent monosynaptic input from the same LGNd neurons whose rates were reduced. The firing rates of corticotectal neurons of layer 5, similarly to spiny cells of layer 4, were not state-dependent, but these cells did become more bursty in the nonalert state, as did the fast-spike cells. These results show that spontaneous firing rates of midlayer spiny populations are remarkably conserved following the shift from alert to nonalert states, despite marked reductions in excitatory thalamic drive and increased activity in local fast-spike inhibitory interneurons.


Assuntos
Nível de Alerta/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Corpos Geniculados/fisiologia , Coelhos , Percepção Visual/fisiologia , Vigília/fisiologia
10.
J Neurosci ; 29(21): 6851-9, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19474312

RESUMO

Sensory cortical neurons are highly sensitive to brain state, with many neurons showing changes in spatial and/or temporal response properties and some neurons becoming virtually unresponsive when subjects are not alert. Although some of these changes are undoubtedly attributable to state-related filtering at the thalamic level, another likely source of such effects is the thalamocortical (TC) synapse, where activation of nicotinic receptors on TC terminals have been shown to enhance synaptic transmission in vitro. However, monosynaptic TC synaptic transmission has not been directly examined during different states of alertness. Here, in awake rabbits that shifted between alert and non-alert EEG states, we examined the monosynaptic TC responses and short-term synaptic dynamics generated by spontaneous impulses of single visual and somatosensory TC neurons. We did this using spike-triggered current source-density analysis, an approach that enables assessment of monosynaptic extracellular currents generated in different cortical layers by impulses of single TC afferents. Spontaneous firing rates of TC neurons were higher, and burst rates were much lower in the alert state. However, we found no state-related changes in the amplitude of monosynaptic TC responses when TC spikes with similar preceding interspike interval were compared. Moreover, the relationship between the preceding interspike interval of the TC spike and postsynaptic response amplitude was not influenced by state. These data indicate that TC synaptic transmission and dynamics are highly conserved across different states of alertness and that observed state-related changes in receptive field properties that occur at the cortical level result from other mechanisms.


Assuntos
Córtex Cerebral/citologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/citologia , Vigília/fisiologia , Potenciais de Ação/fisiologia , Animais , Eletroencefalografia , Inibição Neural , Vias Neurais/fisiologia , Coelhos , Tempo de Reação/fisiologia
11.
J Neurophysiol ; 101(4): 2166-85, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19176606

RESUMO

The neuronal connections from the retina to the dorsal lateral geniculate nucleus (dLGN) are characterized by a high specificity. Each retinal ganglion cell diverges to connect to a small group of geniculate cells and each geniculate cell receives input from a small number of retinal ganglion cells. Consistent with the high specificity of the connections, geniculate cells sharing input from the same retinal afferent are thought to have very similar receptive fields. However, the magnitude of the receptive-field mismatches, which has not been systematically measured across the different cell types in dLGN, seems to be in contradiction with the functional anatomy of the Y visual pathway: Y retinal afferents in the cat diverge into two geniculate layers (A and C) that have Y geniculate cells (Y(A) and Y(C)) with different receptive-field sizes, response latencies, nonlinearity of spatial summation, and contrast sensitivity. To better understand the functional consequences of retinogeniculate divergence, we recorded from pairs of geniculate cells that shared input from a common retinal afferent across layers and within the same layer in dLGN. We found that nearly all cell pairs that shared retinal input across layers had Y-type receptive fields of the same sign (i.e., both on-center) that overlapped by >70%, but frequently differed in size and response latency. The receptive-field mismatches were relatively small in value (receptive-field size ratio <5; difference in peak response <5 ms), but were robustly correlated with the strength of the synchronous firing generated by the shared retinal connections (R(2) = 0.75). On average, the percentage of geniculate spikes that could be attributed to shared retinal inputs was about 10% for all cell-pair combinations studied. These results are used to provide new estimates of retinogeniculate divergence for different cell classes.


Assuntos
Potenciais de Ação/fisiologia , Mapeamento Encefálico , Corpos Geniculados/citologia , Neurônios/fisiologia , Retina/citologia , Animais , Gatos , Contagem de Células/métodos , Corpos Geniculados/fisiologia , Modelos Neurológicos , Neurônios/classificação , Dinâmica não Linear , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Probabilidade , Tempo de Reação/fisiologia , Retina/fisiologia , Estatística como Assunto , Fatores de Tempo , Campos Visuais/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia
12.
Thalamus Relat Syst ; 4(1): 21-34, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19011698

RESUMO

The work of Mircea Steriade demonstrated that the neocortex could synchronize large regions of the thalamus within 10-100 milliseconds (for review see Steriade and Timofeev, 2003, Steriade, 2005). Unlike the synchrony generated by the cortex, the retinal afferents synchronize a restricted group of neighboring thalamic neurons with <1-millisecond precision (Alonso et al., 1996, Yeh et al., 2003). Here, we use a large sample (n= 372) of simultaneous recordings from neighboring neurons in the Lateral Geniculate Nucleus (LGN) to illustrate the high specificity of the synchrony generated by retinal afferents and its dependency on sensory stimulation. First, we demonstrate that cells sharing a retinal afferent show a balanced receptive field diversity: while slight receptive field mismatches are common, the largest mismatches in a specific property (e.g. receptive field size) are restricted to cells that are precisely matched in other properties (e.g. receptive field overlap). Second, we show that these receptive field mismatches are functionally important and can lead to a 5-fold variation in the percentage of synchronous spikes driven by the shared retinal afferent under different stimulus conditions. Based on these and other findings, we speculate that the precise synchronous firing of cells sharing a retinal afferent could serve to amplify local stimuli that may be too brief and small to generate a large number of thalamic spikes.

13.
J Neurosci ; 28(19): 5018-28, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18463255

RESUMO

We used spike-triggered current source-density analysis to examine axonal and postsynaptic currents generated in the visual cortex of awake rabbits by spontaneous spikes of individual sustained and transient dorsal lateral geniculate nucleus (LGNd) neurons. Using these data, we asked whether sustained/transient sensory responses are related to short-term synaptic dynamics at the thalamocortical synapse. Most sustained (34 of 40) and transient (24 of 25) neurons generated axonal and monosynaptic responses in layer 4 and/or 6 of the aligned cortical domain, with input from transient neurons arriving approximately 0.3 ms earlier and 100-200 microm deeper. Postsynaptic cortical responses generated by both thalamic cell classes were reduced in amplitude after a preceding impulse and slowly recovered over a period of >750 ms. We interpret this to reflect interval-dependent recovery from chronic depression at the thalamocortical synapse, caused by significant spontaneous firing of LGNd cells (approximately 8 Hz). Surprisingly, postsynaptic cortical responses generated by spontaneous spikes of sustained thalamic neurons were more depressed than those of transient neurons. This difference was seen both in layers 4 and 6. The depression saturated rapidly with multiple preceding impulses, and postsynaptic responses generated by sustained neurons during maintained visual stimulation remained sufficiently robust to allow a sustained flow of information to the cortex. Our results indicate a relationship between the sensory response properties of thalamic neurons and the short-term dynamics of their synapses, and suggest that cortical recipients of sustained and transient thalamic inputs will differ considerably in their response modulation by prior impulse activity.


Assuntos
Corpos Geniculados/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Condutividade Elétrica , Eletrofisiologia/métodos , Corpos Geniculados/citologia , Plasticidade Neuronal , Neurônios/fisiologia , Estimulação Luminosa , Coelhos , Tempo de Reação , Sinapses/fisiologia , Tálamo/citologia , Tálamo/fisiologia
14.
J Neurosci ; 27(35): 9392-9, 2007 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-17728452

RESUMO

The spread of somatic spikes into dendritic trees has become central to models of dendritic integrative properties and synaptic plasticity. However, backpropagating action potentials (BPAPs) have been studied mainly in slices, in which they are highly sensitive to multiple factors such as firing frequency and membrane conductance, raising doubts about their effectiveness in the awake behaving brain. Here, we examine the spatiotemporal characteristics of BPAPs in layer 5 pyramidal neurons in the visual cortex of adult, awake rabbits, in which EEG-defined brain states ranged from alert vigilance to drowsy/inattention, and, in some cases, to light sleep. To achieve this, we recorded extracellular spikes from layer 5 pyramidal neurons and field potentials above and below these neurons using a 16-channel linear probe, and applied methods of spike-triggered current source-density analysis to these records (Buzsáki and Kandel, 1998; Swadlow et al., 2002). Precise retinotopic alignment of superficial and deep cortical sites was used to optimize alignment of the recording probe with the axis of the apical dendrite. During the above network states, we studied BPAPs generated spontaneously, antidromically (from corticotectal neurons), or via intense synaptic drive caused by natural visual stimulation. Surprisingly, the invasion of BPAPs as far as 800 microm from the soma was little affected by the network state and only mildly attenuated by high firing frequencies. These data reveal that the BPAP is a robust and highly reliable property of neocortical apical dendrites. These events, therefore, are well suited to provide crucial signals for the control of synaptic plasticity during information-processing brain states.


Assuntos
Potenciais de Ação/fisiologia , Dendritos/fisiologia , Células Piramidais/citologia , Córtex Visual/citologia , Vigília/fisiologia , Animais , Estimulação Elétrica/métodos , Eletroencefalografia/métodos , Estimulação Luminosa/métodos , Coelhos , Análise Espectral , Vias Visuais/fisiologia
15.
J Neurosci ; 26(8): 2250-9, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16495452

RESUMO

Corticotectal (CTect) neurons of layer 5 are large and prominent elements of mammalian visual cortex, with thick apical dendrites that ascend to layer 1, "intrinsically bursting" membrane properties, and fast-conducting descending axons that terminate in multiple subcortical domains. These neurons comprise a major output pathway of primary visual cortex, but virtually nothing is known about the synaptic influence of single CTect impulses on the superior colliculus (SC). Here, we examine the distribution of monosynaptic currents generated in the superficial SC by spontaneous impulses of single CTect neurons. We do this by recording the spikes of CTect neurons and the field potentials that they generate through the depths of the SC. Methods of spike-triggered averaging and current source density analysis are then applied to these data. We show, in fully awake rabbits, that single CTect impulses generate potent, fast-rising monosynaptic currents in the SC similar to those generated in sensory cortex by specific thalamic afferents. These currents are focal in depth, precisely retinotopic, and highly dependent on the conduction velocity of the CTect axon. Moreover, we show that CTect synapses, like thalamocortical synapses, suffer a chronic state of depression in awake subjects that is modulated by preceding interspike interval. However, CTect neurons generated few "bursts," and postsynaptic responses in the SC were not significantly influenced by a shift from alert to an inattentive state (indicated by hippocampal EEG). Together, our results suggest that single CTect neurons may resemble thalamocortical neurons in their ability to serve as potent "drivers" of postsynaptic targets.


Assuntos
Relógios Biológicos/fisiologia , Potenciais Evocados Visuais/fisiologia , Colículos Superiores/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Vigília/fisiologia , Animais , Coelhos
16.
Neuron ; 49(3): 421-32, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16446145

RESUMO

Awake mammals are often inattentive in familiar environments, but must still respond appropriately to relevant visual stimulation. Such "inattentive vision" has received little study, perhaps due to difficulties in controlling eye position in this state. In rabbits, eye position is exceedingly stable in both alert and inattentive states. Here, we exploit this stability to examine temporal filtering of visual information in LGNd neurons as rabbits alternate between EEG-defined states. Within a single second of shifting from alert to an inattentive state, both peak temporal frequency and bandwidth were sharply reduced, and burst frequency increased dramatically. However, spatial dimensions of receptive field centers showed no significant state dependence. We conclude that extremely rapid and significant changes in temporal filtering and bursting occur in the LGNd as awake subjects shift between alert and inattentive states.


Assuntos
Potenciais de Ação/fisiologia , Atenção/fisiologia , Corpos Geniculados/citologia , Neurônios/fisiologia , Tálamo/fisiologia , Campos Visuais/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Proteínas ELAV/fisiologia , Proteínas ELAV/efeitos da radiação , Proteína Semelhante a ELAV 3 , Eletroencefalografia , Potenciais Evocados Visuais/fisiologia , Potenciais Evocados Visuais/efeitos da radiação , Neurônios/classificação , Coelhos , Estatísticas não Paramétricas , Fatores de Tempo , Vias Visuais/fisiologia , Vigília/fisiologia
17.
J Neurophysiol ; 93(6): 3537-47, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15590731

RESUMO

Each point in visual space is encoded at the level of the thalamus by a group of neighboring cells with overlapping receptive fields. Here we show that the receptive fields of these cells differ in size and response latency but not at random. We have found that in the cat lateral geniculate nucleus (LGN) the receptive field size and response latency of neighboring neurons are significantly correlated: the larger the receptive field, the faster the response to visual stimuli. This correlation is widespread in LGN. It is found in groups of cells belonging to the same type (e.g., Y cells), and of different types (i.e., X and Y), within a specific layer or across different layers. These results indicate that the inputs from the multiple geniculate afferents that converge onto a cortical cell (approximately 30) are likely to arrive in a sequence determined by the receptive field size of the geniculate afferents. Recent studies have shown that the peak of the spatial frequency tuning of a cortical cell shifts toward higher frequencies as the response progresses in time. Our results are consistent with the idea that these shifts in spatial frequency tuning arise from differences in the response time course of the thalamic inputs.


Assuntos
Mapeamento Encefálico , Corpos Geniculados/citologia , Neurônios/fisiologia , Tempo de Reação/fisiologia , Campos Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Gatos , Contagem de Células/métodos , Simulação por Computador , Método de Monte Carlo , Neurônios/classificação , Estimulação Luminosa/métodos , Percepção Espacial/fisiologia , Estatística como Assunto , Fatores de Tempo
18.
J Neurophysiol ; 93(5): 2959-65, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15601730

RESUMO

Arrays of closely spaced quartz-insulated, platinum-tungsten microelectrodes are widely used to obtain acute recordings from chronically prepared subjects. These electrodes have excellent recording characteristics and can be fabricated to a wide variety of tip specifications. Typically, in such experiments, electrodes are introduced into, and removed from, the brain on a daily basis and, over many months of study, hundreds of penetrations may be made through an intact dura. This procedure has benefits as well as problems and risks. For some experimental aims, it might be desirable to leave the microelectrodes within the brain so that the penetrations could be continued on subsequent days. This would allow a more thorough and systematic exploration of the neurons that lie along the trajectory of each of the closely aligned electrodes and would minimize risks and preparation time associated with daily electrode insertions. Here we present a means for achieving this aim using arrays of sharp, flexible Reitboeck electrodes of extremely fine diameter (40-microm shaft diameter, pulled and ground to a fine tip). We show that these electrodes retain their excellent recording characteristics and can remain under microdrive control within the brain for periods of many months and, in one remarkable case, for >4 years.


Assuntos
Microeletrodos , Neurofisiologia/instrumentação , Potenciais de Ação/fisiologia , Animais , Eletrodos Implantados , Desenho de Equipamento , Microcomputadores , Neurônios/fisiologia , Coelhos , Tálamo/citologia , Tálamo/fisiologia , Tempo
19.
J Neurophysiol ; 90(3): 1852-64, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12966179

RESUMO

The Y pathway in the cat visual system is traditionally viewed as a single channel that originates in the retina. However, most Y cells from the contralateral retina diverge to innervate two different layers of the lateral geniculate nucleus, suggesting a possible channel split: YC (Y geniculate cell in layer C) and YA (Y geniculate cell in layer A). We tested the functional significance of this anatomical divergence by comparing the response properties of simultaneously recorded YC and YA geniculate cells with overlapping receptive fields. Our results demonstrate that YC and YA cells significantly differ in a large number of temporal and spatial parameters including response latency, response transiency, receptive-field size, and linearity of spatial summation. Furthermore, for some of these parameters, the differences between YC and YA cells are as pronounced as the differences between Y and X cells in layer A. These results along with results from previous studies strongly suggest that Y retinal afferents diverge into two separate channels at the level of the thalamus.


Assuntos
Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Campos Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Gatos , Estimulação Luminosa/métodos , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...