Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 7(4): 1693-701, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21109029

RESUMO

Combining gelatins functionalized with the tyrosine-derived groups desaminotyrosine or desaminotyrosyl tyrosine with hydroxyapatite (HAp) led to the formation of composite materials with much lower swelling ratios than those of the pure matrices. Shifts of the infra-red (IR) bands related to the free carboxyl groups could be observed in the presence of HAp, which suggested a direct interaction of matrix and filler that formed additional physical cross-links in the material. In tensile tests and rheological measurements the composites equilibrated in water had increased Young's moduli (from 200 kPa up to 2 MPa) and tensile strengths (from 57 kPa up to 1.1 MPa) compared with the matrix polymers without affecting the elongation at break. Furthermore, an increased thermal stability of the networks from 40 to 85°C could be demonstrated. The differences in the behaviour of the functionalized gelatins compared with pure gelatin as a matrix suggested an additional stabilizing bond between the incorporated aromatic groups and the HAp as supported by the IR results. The composites can potentially be applied as bone fillers.


Assuntos
Durapatita/química , Gelatina/química , Tirosina/química , Carbonatos/química , Fenômenos Mecânicos , Espectrofotometria Infravermelho , Temperatura , Água/química
2.
Acta Biomater ; 6(12): 4539-46, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20624492

RESUMO

Zirconia nanoparticles prepared by laser vaporization were incorporated into the primer or into the adhesive of a commercial adhesive system in order to evaluate its effect on bond strength to dentin. Zirconia nanoparticles (20-50nm) were prepared using a particular laser vaporization technique and incorporated into the primer (P) or into the adhesive (A) of the Adper Scotchbond Multi-Purpose (SBMP) system at 5, 10, 15 and 20wt.% by means of mechanical mixing (stirring) and ultrasonication. Control (unfilled) and experimental groups (filled) were applied, according to the manufacturer's instructions, onto flat mid-coronal human dentin. Composite crowns were built up, stored in distilled water for 24h at 37°C and cut into 0.65±0.05mm² beams following a non-trimming microtensile technique. Specimens were fractured in tension using a universal testing machine (Zwick) and examined by scanning electron microscopy for fractographic analysis. Microtensile bond strength (µTBS) data were analyzed using a two-way ANOVA and modified LSD test at α=0.05. Analysis of the nanofiller distribution and ultramorphological characterization of the interface were performed by transmission electron microscopy (TEM). Zirconia nanoparticle incorporation into the primer or into the adhesive of SBMP significantly increased µTBS to dentin. Filler concentration only affected µTBS significantly in the P group. Statistically significant differences between groups P and A occurred only at 20wt.% filler content, with a significantly higher µTBS in group P. TEM micrographs revealed nanoparticle deposition on top of a hybrid layer when incorporated into the primer, whereas they remained dispersed through the adhesive layer in group A. Zirconia nanoparticles incorporation into SBMP increased bond strength to dentin by reinforcing the interface adhesive layer. Nanofiller incorporation into the primer solution showed a tendency of increasing bond strength with increasing concentration. At high concentrations (20wt.%) nanofiller incorporation was more efficient in increasing bond strength if incorporated in the primer solution. Adding nanofillers to the primer and to the adhesive solutions resulted in different particle distributions at the interface.


Assuntos
Cimentos Dentários/química , Lasers , Teste de Materiais/métodos , Nanopartículas/química , Zircônio/química , Resinas Compostas/química , Análise do Estresse Dentário , Dentina/química , Dentina/ultraestrutura , Adesivos Dentinários/química , Nanopartículas/ultraestrutura , Resistência à Tração , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA