Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Z Naturforsch C J Biosci ; 66(7-8): 394-402, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21950164

RESUMO

Pseudomonas aeruginosa BN10 isolated from hydrocarbon-polluted soil was found to produce rhamnolipids when cultivated on 2% glycerol, glucose, n-hexadecane, and n-alkanes. The rhamnolipids were partially purified on silica gel columns and their chemical structures elucidated by combination of one- and two-dimensional 1H and 13C NMR techniques and ESI-MS analysis. Eight structural rhamnolipid homologues were identified: Rha-C10-C8, Rha-C10-C10, Rha-C10-C12:1, Rha-C10-C12, Rha2-C10-C8, Rha2-C10-C10, Rha2-C10-C12:1, and Rha2-C10-C12. The chemical composition of the rhamnolipid mixtures produced on different carbon sources did not vary with the type of carbon source used. The rhamnolipid mixture produced by Pseudomonas aeruginosa BN10 on glycerol reduced the surface tension of pure water from 72 to 29 mN m(-1) at a critical micellar concentration of 40 mg 1(-1), and the interfacial tension was 0.9 mN m(-1). The new surfactant product formed stable emulsions with hydrocarbons and showed high antimicrobial activity against Gram-positive bacteria. The present study shows that the new strain Pseudomonas aeruginosa BN10 demonstrates enhanced production of the di-rhamnolipid Rha2-C10-C10 on all carbon sources used. Due to its excellent surface and good antimicrobial activities the rhamnolipid homologue mixture from Pseudomonas aeruginosa BN10 can be exploited for use in bioremediation, petroleum and pharmaceutical industries.


Assuntos
Glicolipídeos/farmacologia , Pseudomonas aeruginosa/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA