Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 140(18): 3799-808, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23924634

RESUMO

Genetic regulation of the cell fate transition from lateral plate mesoderm to the specification of cardiomyocytes requires suppression of Wnt/ß-catenin signaling, but the mechanism for this is not well understood. By analyzing gene expression and chromatin dynamics during directed differentiation of human embryonic stem cells (hESCs), we identified a suppressor of Wnt/ß-catenin signaling, transmembrane protein 88 (TMEM88), as a potential regulator of cardiovascular progenitor cell (CVP) specification. During the transition from mesoderm to the CVP, TMEM88 has a chromatin signature of genes that mediate cell fate decisions, and its expression is highly upregulated in advance of key cardiac transcription factors in vitro and in vivo. In early zebrafish embryos, tmem88a is expressed broadly in the lateral plate mesoderm, including the bilateral heart fields. Short hairpin RNA targeting of TMEM88 during hESC cardiac differentiation increases Wnt/ß-catenin signaling, confirming its role as a suppressor of this pathway. TMEM88 knockdown has no effect on NKX2.5 or GATA4 expression, but 80% of genes most highly induced during CVP development have reduced expression, suggesting adoption of a new cell fate. In support of this, analysis of later stage cell differentiation showed that TMEM88 knockdown inhibits cardiomyocyte differentiation and promotes endothelial differentiation. Taken together, TMEM88 is crucial for heart development and acts downstream of GATA factors in the pre-cardiac mesoderm to specify lineage commitment of cardiomyocyte development through inhibition of Wnt/ß-catenin signaling.


Assuntos
Proteínas de Membrana/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Linhagem da Célula/genética , Regulação para Baixo/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Camundongos , Modelos Biológicos , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Regulação para Cima/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , beta Catenina/metabolismo
2.
Cell ; 151(1): 221-32, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22981225

RESUMO

Directed differentiation of human embryonic stem cells (ESCs) into cardiovascular cells provides a model for studying molecular mechanisms of human cardiovascular development. Although it is known that chromatin modification patterns in ESCs differ markedly from those in lineage-committed progenitors and differentiated cells, the temporal dynamics of chromatin alterations during differentiation along a defined lineage have not been studied. We show that differentiation of human ESCs into cardiovascular cells is accompanied by programmed temporal alterations in chromatin structure that distinguish key regulators of cardiovascular development from other genes. We used this temporal chromatin signature to identify regulators of cardiac development, including the homeobox gene MEIS2. Using the zebrafish model, we demonstrate that MEIS2 is critical for proper heart tube formation and subsequent cardiac looping. Temporal chromatin signatures should be broadly applicable to other models of stem cell differentiation to identify regulators and provide key insights into major developmental decisions.


Assuntos
Diferenciação Celular , Cromatina , Células-Tronco Embrionárias/metabolismo , Coração/embriologia , Miocárdio/citologia , Animais , Epigênese Genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
3.
Cell ; 136(6): 1136-47, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19303855

RESUMO

Interactions between developmental signaling pathways govern the formation and function of stem cells. Prostaglandin (PG) E2 regulates vertebrate hematopoietic stem cells (HSC). Similarly, the Wnt signaling pathway controls HSC self-renewal and bone marrow repopulation. Here, we show that wnt reporter activity in zebrafish HSCs is responsive to PGE2 modulation, demonstrating a direct interaction in vivo. Inhibition of PGE2 synthesis blocked wnt-induced alterations in HSC formation. PGE2 modified the wnt signaling cascade at the level of beta-catenin degradation through cAMP/PKA-mediated stabilizing phosphorylation events. The PGE2/Wnt interaction regulated murine stem and progenitor populations in vitro in hematopoietic ES cell assays and in vivo following transplantation. The relationship between PGE2 and Wnt was also conserved during regeneration of other organ systems. Our work provides in vivo evidence that Wnt activation in stem cells requires PGE2, and suggests the PGE2/Wnt interaction is a master regulator of vertebrate regeneration and recovery.


Assuntos
Dinoprostona/metabolismo , Desenvolvimento Embrionário , Células-Tronco Hematopoéticas/metabolismo , Proteínas Wnt/metabolismo , Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células-Tronco Embrionárias/metabolismo , Fígado/fisiologia , Camundongos , Regeneração , Transdução de Sinais , Peixe-Zebra/embriologia , beta Catenina/metabolismo
4.
Sci Signal ; 1(45): ra12, 2008 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19001663

RESUMO

The identification and characterization of previously unidentified signal transduction molecules has expanded our understanding of biological systems and facilitated the development of mechanism-based therapeutics. We present a highly validated small interfering RNA (siRNA) screen that functionally annotates the human genome for modulation of the Wnt/beta-catenin signal transduction pathway. Merging these functional data with an extensive Wnt/beta-catenin protein interaction network produces an integrated physical and functional map of the pathway. The power of this approach is illustrated by the positioning of siRNA screen hits into discrete physical complexes of proteins. Similarly, this approach allows one to filter discoveries made through protein-protein interaction screens for functional contribution to the phenotype of interest. Using this methodology, we characterized AGGF1 as a nuclear chromatin-associated protein that participates in beta-catenin-mediated transcription in human colon cancer cells.


Assuntos
Transativadores/metabolismo , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/fisiologia , Linhagem Celular Tumoral , Neoplasias do Colo , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas Wnt/genética , beta Catenina/genética
5.
Hum Mol Genet ; 17(3): 402-12, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981814

RESUMO

Missense mutations in the PRESENILIN1 (PSEN1) gene frequently underlie familial Alzheimer's disease (FAD). Nonsense and most splicing mutations result in the synthesis of truncated peptides, and it has been assumed that truncated PSEN1 protein is functionless so that heterozygotes for these mutations are unaffected. Some FAD mutations affecting PSEN1 mRNA splicing cause loss of exon 8 or 9 sequences while maintaining the reading frame. We attempted to model these exon-loss mutations in zebrafish embryos by injecting morpholino antisense oligonucleotides (morpholinos) directed against splice acceptor sites in zebrafish psen1 transcripts. However, this produced cryptic changes in splicing potentially forming mRNAs encoding truncated presenilin proteins. Aberrant splicing in the region between exons 6 and 8 produces potent dominant negative effects on Psen1 protein activity, including Notch signalling, and causes a hydrocephalus phenotype. Reductions in Psen1 activity feedback positively to increase psen1 transcription through a mechanism apparently independent of gamma-secretase. We present evidence that the dominant negative effects are mediated through production of truncated Psen1 peptides that interfere with the normal activity of both Psen1 and Psen2. Mutations causing such truncations would be dominant lethal in embryo development. Somatic cellular changes in ageing cells that interfere with PSEN1 splicing, or otherwise cause protein truncation, might contribute to sporadic Alzheimer's disease, cancer and other diseases.


Assuntos
Mutação , Presenilina-1/genética , Presenilina-1/metabolismo , Splicing de RNA , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Códon sem Sentido , Primers do DNA/genética , Modelos Animais de Doenças , Éxons , Humanos , Hidrocefalia/embriologia , Hidrocefalia/genética , Mutação de Sentido Incorreto , Oligodesoxirribonucleotídeos Antissenso/genética , Fenótipo , Doença de Pick/genética , Presenilina-1/química , Presenilina-2/química , Presenilina-2/genética , Presenilina-2/metabolismo , Biossíntese de Proteínas , Transcrição Gênica , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/química
6.
Genes Dev ; 21(11): 1292-315, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17545465

RESUMO

While all animals have evolved strategies to respond to injury and disease, their ability to functionally recover from loss of or damage to organs or appendages varies widely damage to skeletal muscle, but, unlike amphibians and fish, they fail to regenerate heart, lens, retina, or appendages. The relatively young field of regenerative medicine strives to develop therapies aimed at improving regenerative processes in humans and is predicated on >40 years of success with bone marrow transplants. Further progress will be accelerated by implementing knowledge about the molecular mechanisms that regulate regenerative processes in model organisms that naturally possess the ability to regenerate organs and/or appendages. In this review we summarize the current knowledge about the signaling pathways that regulate regeneration of amphibian and fish appendages, fish heart, and mammalian liver and skeletal muscle. While the cellular mechanisms and the cell types involved in regeneration of these systems vary widely, it is evident that shared signals are involved in tissue regeneration. Signals provided by the immune system appear to act as triggers of many regenerative processes. Subsequently, pathways that are best known for their importance in regulating embryonic development, in particular fibroblast growth factor (FGF) and Wnt/beta-catenin signaling (as well as others), are required for progenitor cell formation or activation and for cell proliferation and specification leading to tissue regrowth. Experimental activation of these pathways or interference with signals that inhibit regenerative processes can augment or even trigger regeneration in certain contexts.


Assuntos
Músculo Esquelético/fisiologia , Regeneração/fisiologia , Medicina Regenerativa , Transdução de Sinais , Animais , Humanos , Vertebrados/fisiologia
7.
Dev Biol ; 306(1): 170-8, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17442299

RESUMO

Anuran (frog) tadpoles and urodeles (newts and salamanders) are the only vertebrates capable of fully regenerating amputated limbs. During the early stages of regeneration these amphibians form a "blastema", a group of mesenchymal progenitor cells that specifically directs the regrowth of the limb. We report that wnt-3a is expressed in the apical epithelium of regenerating Xenopus laevis limb buds, at the appropriate time and place to play a role during blastema formation. To test whether Wnt/beta-catenin signaling is required for limb regeneration, we created transgenic X. laevis tadpoles that express Dickkopf-1 (Dkk1), a specific inhibitor of Wnt/beta-catenin signaling, under the control of a heat-shock promoter. Heat-shock immediately before limb amputation or during early blastema formation blocked limb regeneration but did not affect the development of contralateral, un-amputated limb buds. When the transgenic tadpoles were heat-shocked following the formation of a blastema, however, they retained the ability to regenerate partial hindlimb structures. Furthermore, heat-shock induced Dkk1 blocked fgf-8 but not fgf-10 expression in the blastema. We conclude that Wnt/beta-catenin signaling has an essential role during the early stages of limb regeneration, but is not absolutely required after blastema formation.


Assuntos
Extremidades/fisiologia , Regeneração , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Animais Geneticamente Modificados , Fator 10 de Crescimento de Fibroblastos/análise , Fator 10 de Crescimento de Fibroblastos/antagonistas & inibidores , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 8 de Crescimento de Fibroblasto/análise , Fator 8 de Crescimento de Fibroblasto/antagonistas & inibidores , Fator 8 de Crescimento de Fibroblasto/metabolismo , Proteínas de Choque Térmico HSP70/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Botões de Extremidades , Regiões Promotoras Genéticas , Transdução de Sinais , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Proteína Wnt3 , Proteína Wnt3A , Proteínas de Xenopus/genética , Xenopus laevis , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
8.
Nat Genet ; 39(1): 106-12, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17128274

RESUMO

Fungiform taste papillae form a regular array on the dorsal tongue. Taste buds arise from papilla epithelium and, unusually for epithelial derivatives, synapse with neurons, release neurotransmitters and generate receptor and action potentials. Despite the importance of taste as one of our five senses, genetic analyses of taste papilla and bud development are lacking. We demonstrate that Wnt-beta-catenin signaling is activated in developing fungiform placodes and taste bud cells. A dominant stabilizing mutation of epithelial beta-catenin causes massive overproduction of enlarged fungiform papillae and taste buds. Likewise, genetic deletion of epithelial beta-catenin or inhibition of Wnt-beta-catenin signaling by ectopic dickkopf1 (Dkk1) blocks initiation of fungiform papilla morphogenesis. Ectopic papillae are innervated in the stabilizing beta-catenin mutant, whereas ectopic Dkk1 causes absence of lingual epithelial innervation. Thus, Wnt-beta-catenin signaling is critical for fungiform papilla and taste bud development. Altered regulation of this pathway may underlie evolutionary changes in taste papilla patterning.


Assuntos
Papilas Gustativas/embriologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Transgênicos , Morfogênese/genética , Gravidez , Transdução de Sinais/genética , Papilas Gustativas/crescimento & desenvolvimento , beta Catenina/genética
9.
Development ; 134(3): 479-89, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17185322

RESUMO

In contrast to mammals, lower vertebrates have a remarkable capacity to regenerate complex structures damaged by injury or disease. This process, termed epimorphic regeneration, involves progenitor cells created through the reprogramming of differentiated cells or through the activation of resident stem cells. Wnt/beta-catenin signaling regulates progenitor cell fate and proliferation during embryonic development and stem cell function in adults, but its functional involvement in epimorphic regeneration has not been addressed. Using transgenic fish lines, we show that Wnt/beta-catenin signaling is activated in the regenerating zebrafish tail fin and is required for formation and subsequent proliferation of the progenitor cells of the blastema. Wnt/beta-catenin signaling appears to act upstream of FGF signaling, which has recently been found to be essential for fin regeneration. Intriguingly, increased Wnt/beta-catenin signaling is sufficient to augment regeneration, as tail fins regenerate faster in fish heterozygous for a loss-of-function mutation in axin1, a negative regulator of the pathway. Likewise, activation of Wnt/beta-catenin signaling by overexpression of wnt8 increases proliferation of progenitor cells in the regenerating fin. By contrast, overexpression of wnt5b (pipetail) reduces expression of Wnt/beta-catenin target genes, impairs proliferation of progenitors and inhibits fin regeneration. Importantly, fin regeneration is accelerated in wnt5b mutant fish. These data suggest that Wnt/beta-catenin signaling promotes regeneration, whereas a distinct pathway activated by wnt5b acts in a negative-feedback loop to limit regeneration.


Assuntos
Regeneração/fisiologia , Proteínas Wnt/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Primers do DNA/genética , Retroalimentação , Regeneração/genética , Transdução de Sinais , Cauda , Proteínas Wnt/genética , Proteína Wnt-5a , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , beta Catenina/genética , beta Catenina/fisiologia
10.
Arch Histol Cytol ; 69(3): 189-98, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17031025

RESUMO

Taste buds are multicellular receptor organs embedded in the lingual epithelium of vertebrates. Taste cells within these buds are modified epithelial cells as they lack axons and turnover rapidly throughout life, yet have neuronal properties enabling them to transduce taste stimuli and transmit this information to the nervous system. Taste cells are heterogeneous, comprising types I, II, III and basal cells, and are continually replaced during adult life, raising the question of how these different cells are generated. The molecular mechanisms governing taste cell differentiation are unknown, but the Notch signaling system has been implicated in this process based upon recent gene expression data. Here we investigate the expression in mature taste buds of Notch related transcription factors, Hes6 and Mash1, which are among the first genes expressed in embryonic taste buds. We further compare these patterns with those of immunocytochemical markers of discrete taste cell types. We find that Hes6 is expressed in a subset of basally located, possibly progenitor cells, yet is rarely coexpressed with taste cell markers. In contrast, Mash1 is detected in some basal cells and in the majority of differentiated type III taste cells, but never in type II cells. These data suggest a role for Notch signaling in taste cell differentiation in adult taste buds.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas Repressoras/biossíntese , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Animais , Diferenciação Celular/fisiologia , Imunofluorescência , Imuno-Histoquímica , Hibridização In Situ , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...