Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(24): e2104594, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748165

RESUMO

Desmoplasia is characteristic of pancreatic ductal adenocarcinoma (PDAC), which exhibits 5-year survival rates of 3%. Desmoplasia presents physical and biochemical barriers that contribute to treatment resistance, yet depleting the stroma alone is unsuccessful and even detrimental to patient outcomes. This study is the first demonstration of targeted photoactivable multi-inhibitor liposomes (TPMILs) that induce both photodynamic and chemotherapeutic tumor insult, while simultaneously remediating desmoplasia in orthotopic PDAC. TPMILs targeted with cetuximab (anti-EGFR mAb) contain lipidated benzoporphyrin derivative (BPD-PC) photosensitizer and irinotecan. The desmoplastic tumors comprise human PDAC cells and patient-derived cancer-associated fibroblasts. Upon photoactivation, the TPMILs induce 90% tumor growth inhibition at only 8.1% of the patient equivalent dose of nanoliposomal irinotecan (nal-IRI). Without EGFR targeting, PMIL photoactivation is ineffective. TPMIL photoactivation is also sixfold more effective at inhibiting tumor growth than a cocktail of Visudyne-photodynamic therapy (PDT) and nal-IRI, and also doubles survival and extends progression-free survival by greater than fivefold. Second harmonic generation imaging reveals that TPMIL photoactivation reduces collagen density by >90% and increases collagen nonalignment by >103 -fold. Collagen nonalignment correlates with a reduction in tumor burden and survival. This single-construct phototoxic, chemotherapeutic, and desmoplasia-remediating regimen offers unprecedented opportunities to substantially extend survival in patients with otherwise dismal prognoses.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Receptores ErbB/uso terapêutico , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Lipossomos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pancreáticas
2.
Subcell Biochem ; 96: 153-175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252728

RESUMO

The formation of membrane-bound complexes between specific coagulation factors at different cell surfaces is required for effective blood clotting. The most important of these complexes, the intrinsic Tenase and Prothrombinase complexes, are formed on the activated platelet surface during the propagation phase of coagulation. These two complexes are highly specific in their assembly mechanism and function modulated by anionic membranes, thus offering desirable targets for pharmaceutical interventions. Factor V (FV) and factor VIII (FVIII) are highly homologous non-enzymatic proteins. In their active state, FVa and FVIIIa serve as cofactors for the respective serine proteases factor Xa (FXa) and factor IXa (FIXa), significantly increasing their catalytic activity. This is achieved by forming well organized membrane-bound complexes at the phosphatidylserine rich activated platelet membrane in the presence of Ca2+ ions. The tenase (FVIIIa/FIXa) complex, catalyzes the proteolytic conversion of FX to FXa. Subsequently the prothrombinase (FVa/FXa) complex catalyzes the conversion of prothrombin to thrombin, required for efficient blood clotting. Although significant knowledge of FV and FVIII biochemistry and regulation has been achieved, the molecular mechanisms of their function are yet to be defined. Understanding the geometric assembly of the tenase and prothrombinase complexes is paramount in defining the structural basis of bleeding and thrombotic disorders. Such knowledge will enable the design of efficient pro- and anticoagulant therapies critical for regulating abnormal hemostasis. In this chapter, we will summarize the findings to date, showing our achievement in the field and outlining the future findings required to grasp the complexity of these proteins.


Assuntos
Coagulação Sanguínea , Membrana Celular/metabolismo , Fator VIII/metabolismo , Fator V/metabolismo , Plaquetas/citologia , Membrana Celular/química , Humanos , Trombina , Tromboplastina
3.
Nature ; 565(7737): 49-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30479383

RESUMO

The proteasome is an ATP-dependent, 2.5-megadalton molecular machine that is responsible for selective protein degradation in eukaryotic cells. Here we present cryo-electron microscopy structures of the substrate-engaged human proteasome in seven conformational states at 2.8-3.6 Å resolution, captured during breakdown of a polyubiquitylated protein. These structures illuminate a spatiotemporal continuum of dynamic substrate-proteasome interactions from ubiquitin recognition to substrate translocation, during which ATP hydrolysis sequentially navigates through all six ATPases. There are three principal modes of coordinated hydrolysis, featuring hydrolytic events in two oppositely positioned ATPases, in two adjacent ATPases and in one ATPase at a time. These hydrolytic modes regulate deubiquitylation, initiation of translocation and processive unfolding of substrates, respectively. Hydrolysis of ATP powers a hinge-like motion in each ATPase that regulates its substrate interaction. Synchronization of ATP binding, ADP release and ATP hydrolysis in three adjacent ATPases drives rigid-body rotations of substrate-bound ATPases that are propagated unidirectionally in the ATPase ring and unfold the substrate.


Assuntos
Microscopia Crioeletrônica , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Humanos , Hidrólise , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Estrutura Quaternária de Proteína , Desdobramento de Proteína , Especificidade por Substrato , Ubiquitinação
4.
Langmuir ; 34(22): 6454-6461, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29754486

RESUMO

We explored the influence of nanoparticle (NP) surface charge and hydrophobicity on NP-biomolecule interactions by measuring the composition of adsorbed phospholipids on four NPs, namely, positively charged CeO2 and ZnO and negatively charged BaSO4 and silica-coated CeO2, after exposure to bronchoalveolar lavage fluid (BALf) obtained from rats, and to a mixture of neutral dipalmitoyl phosphatidylcholine (DPPC) and negatively charged dipalmitoyl phosphatidic acid (DPPA). The resulting NP-lipid interactions were examined by cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM). Our data show that the amount of adsorbed lipids on NPs after incubation in BALf and the DPPC/DPPA mixture was higher in CeO2 than in the other NPs, qualitatively consistent with their relative hydrophobicity. The relative concentrations of specific adsorbed phospholipids on NP surfaces were different from their relative concentrations in the BALf. Sphingomyelin was not detected in the extracted lipids from the NPs despite its >20% concentration in the BALf. AFM showed that the more hydrophobic CeO2 NPs tended to be located inside lipid vesicles, whereas less hydrophobic BaSO4 NPs appeared to be outside. In addition, cryo-TEM analysis showed that CeO2 NPs were associated with the formation of multilamellar lipid bilayers, whereas BaSO4 NPs with unilamellar lipid bilayers. These data suggest that the NP surface hydrophobicity predominantly controls the amounts and types of lipids adsorbed, as well as the nature of their interaction with phospholipids.


Assuntos
Nanopartículas/química , Fosfolipídeos/química , Molhabilidade , Animais , Microscopia Crioeletrônica , Bicamadas Lipídicas , Ratos , Dióxido de Silício/química
5.
Front Physiol ; 7: 317, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524969

RESUMO

The M2 protein from influenza A plays important roles in its viral cycle. It contains a single transmembrane helix, which oligomerizes into a homotetrameric proton channel that conducts in the low-pH environment of the host-cell endosome and Golgi apparatus, leading to virion uncoating at an early stage of infection. We studied conformational rearrangements that occur in the M2 core transmembrane domain residing on the lipid bilayer, flanked by juxtamembrane residues (M2TMD21-49 fragment), upon its interaction with amantadine drug at pH 5.5 when M2 is conductive. We also tested the role of specific mutation and lipid chain length. Electron spin resonance (ESR) spectroscopy and electron microscopy were applied to M2TMD21-49, labeled at the residue L46C with either nitroxide spin-label or Nanogold® reagent, respectively. Electron microscopy confirmed that M2TMD21-49 reconstituted into DOPC/POPS at 1:10,000 peptide-to-lipid molar ratio (P/L) either with or without amantadine, is an admixture of monomers, dimers, and tetramers, confirming our model based on a dimer intermediate in the assembly of M2TMD21-49. As reported by double electron-electron resonance (DEER), in DOPC/POPS membranes amantadine shifts oligomer equilibrium to favor tetramers, as evidenced by an increase in DEER modulation depth for P/L's ranging from 1:18,000 to 1:160. Furthermore, amantadine binding shortens the inter-spin distances (for nitroxide labels) by 5-8 Å, indicating drug induced channel closure on the C-terminal side. No such effect was observed for the thinner membrane of DLPC/DLPS, emphasizing the role of bilayer thickness. The analysis of continuous wave (cw) ESR spectra of spin-labeled L46C residue provides additional support to a more compact helix bundle in amantadine-bound M2TMD 21-49 through increased motional ordering. In contrast to wild-type M2TMD21-49, the amantadine-bound form does not exhibit noticeable conformational changes in the case of G34A mutation found in certain drug-resistant influenza strains. Thus, the inhibited M2TMD21-49 channel is a stable tetramer with a closed C-terminal exit pore. This work is aimed at contributing to the development of structure-based anti-influenza pharmaceuticals.

6.
Sci Rep ; 5: 11212, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26082135

RESUMO

Membrane-bound Factor VIII (FVIII) has a critical function in blood coagulation as the pro-cofactor to the serine-protease Factor IXa (FIXa) in the FVIIIa-FIXa complex assembled on the activated platelet membrane. Defects or deficiency of FVIII cause Hemophilia A, a mild to severe bleeding disorder. Despite existing crystal structures for FVIII, its membrane-bound organization has not been resolved. Here we present the dimeric FVIII membrane-bound structure when bound to lipid nanotubes, as determined by cryo-electron microscopy. By combining the structural information obtained from helical reconstruction and single particle subtomogram averaging at intermediate resolution (15-20 Å), we show unambiguously that FVIII forms dimers on lipid nanotubes. We also demonstrate that the organization of the FVIII membrane-bound domains is consistently different from the crystal structure in solution. The presented results are a critical step towards understanding the mechanism of the FVIIIa-FIXa complex assembly on the activated platelet surface in the propagation phase of blood coagulation.


Assuntos
Fator VIII/química , Fator VIII/metabolismo , Lipídeos , Nanotubos , Multimerização Proteica , Animais , Microscopia Crioeletrônica , Humanos , Lipídeos/química , Modelos Moleculares , Nanotubos/química , Ligação Proteica , Conformação Proteica , Tomografia/métodos
7.
Thromb Haemost ; 113(4): 741-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25589466

RESUMO

Nanodiscs (ND) are lipid bilayer membrane patches held by amphiphilic scaffolding proteins (MSP) of ~10 nm in diameter. Nanodiscs have been developed as lipid nanoplatforms for structural and functional studies of membrane and membrane associated proteins. Their size and monodispersity have rendered them unique for electron microscopy (EM) and single particle analysis studies of proteins and complexes either spanning or associated to the ND membrane. Binding of blood coagulation factors and complexes, such as the Factor VIII (FVIII) and the Factor VIIIa - Factor IXa (intrinsic tenase) complex to the negatively charged activated platelet membrane is required for normal haemostasis. In this study we present our work on optimising ND, specifically designed to bind FVIII at close to physiological conditions. The binding of FVIII to the negatively charged ND rich in phosphatidylserine (PS) was followed by electron microscopy at three different PS compositions and two different membrane scaffolding protein (MSP1D1) to lipid ratios. Our results show that the ND with highest PS content (80 %) and lowest MSP1D1 to lipid ratio (1:47) are the most suitable for structure determination of the membrane-bound FVIII by single particle EM. Our preliminary FVIII 3D reconstruction as bound to PS containing ND demonstrates the suitability of the optimised ND for structural studies by EM. Further assembly of the activated FVIII form (FVIIIa) and the whole FVIIIa-FIXa complex on ND, followed by EM and single particle reconstruction will help to identify the protein-protein and protein-membrane interfaces critical for the intrinsic tenase complex assembly and function.


Assuntos
Fator VIII/metabolismo , Proteínas de Membrana/metabolismo , Membranas Artificiais , Nanoestruturas , Fosfatidilserinas/metabolismo , Algoritmos , Animais , Sítios de Ligação , Fator VIII/química , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Proteínas de Membrana/química , Microscopia Eletrônica de Transmissão , Fosfatidilserinas/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Propriedades de Superfície , Suínos
8.
J Blood Disord Transfus ; 6(6): 325, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28936365

RESUMO

BACKGROUND: Hemophilia A is a congenital bleeding disorder caused by defective or deficient factor VIII (FVIII). The active form of FVIII is the co-factor for the serine protease factor IXa (FIXa) in the membrane-bound intrinsic tenase (FVIIIa-FIXa) complex. The assembly of the FVIIIa-FIXa complex on the activated platelet surface is critical for successful blood clotting. OBJECTIVES: To characterize the role of lipid nanodiscs (ND) for on FVIII function in vivo and test the lipid ND as a delivery system for FVIII. To evaluate the potential of binding recombinant FVIII to ND as improved treatment for Hemophilia A. METHODS: Recombinant porcine FVIII (rpFVIII) was expressed and characterized in solution, and when bound to ND. The rpFVIII, ND and rpFVIII-ND complexes were characterized via transmission electron microscopy. Functional studies were carried out using aPTT tests and time resolved tail snip studies of hemophilic mice. RESULTS: Functional rpFVIII was successfully assembled on lipid ND. When injected in hemophilic mice, the rpFVIII-ND complexes showed a pronounced pro-coagulant effect, which was stronger than that of rpFVIII alone. While injection of the ND alone showed a pro-coagulant effect this effect was not additive, implying that the rpFVIII-ND complexes have a synergistic effect on the clotting process in hemophilic mice. CONCLUSIONS: Binding of rpFVIII to ND prior to its injection in hemophilic mice significantly improves the therapeutic function of the protein. This represents a meaningful step towards a new approach to modulate blood coagulation at the membrane-bound FVIII level and the assembly of the intrinsic tenase complex.

9.
CNS Neurol Disord Drug Targets ; 13(9): 1559-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426956

RESUMO

Fibroblast growth factor 14 (FGF14) is a member of the intracellular FGF (iFGFs) family and a functionally relevant component of the neuronal voltage-gated Na(+) (Nav) channel complex. Through a monomeric interaction with the intracellular C-terminus of neuronal Nav channels, FGF14 modulates Na(+) currents in an Nav isoform-specific manner serving as a fine-tuning regulator of excitability. Previous studies based on the highly homologous FGF13 homodimer crystal structure have proposed a conserved protein:protein interaction (PPI) interface common to both Nav channel binding and iFGF homodimer formation. This interface could provide a novel target for drug design against neuronal Nav channels. Here, we provide the first in-cell reconstitution of the FGF14:FGF14 protein complex and measure the dimer interaction using the split-luciferase complementation assay (LCA). Based on the FGF14 dimer structure generated in silico, we designed short peptide fragments against the FGF14 dimer interface. One of these fragments, FLPK aligns with the pocket defined by the ß12-strand and ß8-ß9 loop, reducing the FGF14:FGF14 dimer interaction by 25% as measured by LCA. We further compared the relative interaction strength of FGF14 wild type homodimers with FGF14 hetero- and homodimers carrying double N mutations at the Y153 and V155 residues, located at the ß8-ß9 loop. The Y153N/V155N double mutation counteracts the FLPK effect by increasing the strength of the dimer interaction. These data suggest that the ß12 strand of FGF14 might serve as scaffold for drug design against neuronal FGF14 dimers and Nav channels.


Assuntos
Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Análise de Variância , Fatores de Crescimento de Fibroblastos/genética , Células HEK293 , Humanos , Imunoprecipitação , Luciferases/metabolismo , Isoformas de Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
10.
Proteins ; 82(11): 2902-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24957666

RESUMO

We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment.


Assuntos
Microscopia Crioeletrônica/métodos , Fator VIII/química , Proteínas de Membrana/química , Nanotecnologia/métodos , Membrana Celular/química , Humanos , Bicamadas Lipídicas/química , Nanotubos , Fosfatidilserinas/química , Conformação Proteica
11.
J Vis Exp ; (88)2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24961276

RESUMO

Cryo-electron microscopy (Cryo-EM)(1) is a powerful approach to investigate the functional structure of proteins and complexes in a hydrated state and membrane environment(2). Coagulation Factor VIII (FVIII)(3) is a multi-domain blood plasma glycoprotein. Defect or deficiency of FVIII is the cause for Hemophilia type A - a severe bleeding disorder. Upon proteolytic activation, FVIII binds to the serine protease Factor IXa on the negatively charged platelet membrane, which is critical for normal blood clotting(4). Despite the pivotal role FVIII plays in coagulation, structural information for its membrane-bound state is incomplete(5). Recombinant FVIII concentrate is the most effective drug against Hemophilia type A and commercially available FVIII can be expressed as human or porcine, both forming functional complexes with human Factor IXa(6,7). In this study we present a combination of Cryo-electron microscopy (Cryo-EM), lipid nanotechnology and structure analysis applied to resolve the membrane-bound structure of two highly homologous FVIII forms: human and porcine. The methodology developed in our laboratory to helically organize the two functional recombinant FVIII forms on negatively charged lipid nanotubes (LNT) is described. The representative results demonstrate that our approach is sufficiently sensitive to define the differences in the helical organization between the two highly homologous in sequence (86% sequence identity) proteins. Detailed protocols for the helical organization, Cryo-EM and electron tomography (ET) data acquisition are given. The two-dimensional (2D) and three-dimensional (3D) structure analysis applied to obtain the 3D reconstructions of human and porcine FVIII-LNT is discussed. The presented human and porcine FVIII-LNT structures show the potential of the proposed methodology to calculate the functional, membrane-bound organization of blood coagulation Factor VIII at high resolution.


Assuntos
Fator VIII/química , Lipídeos/química , Nanotubos , Animais , Microscopia Crioeletrônica/métodos , Humanos , Bicamadas Lipídicas/química , Nanotecnologia/métodos , Estrutura Secundária de Proteína , Suínos
12.
Traffic ; 14(9): 987-96, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23710728

RESUMO

The molecular chaperone, Hsc70, together with its co-factor, auxilin, facilitates the ATP-dependent removal of clathrin during clathrin-mediated endocytosis in cells. We have used cryo-electron microscopy to determine the 3D structure of a complex of clathrin, auxilin(401-910) and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map, we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly.


Assuntos
Auxilinas/química , Auxilinas/metabolismo , Cadeias Leves de Clatrina/química , Cadeias Leves de Clatrina/metabolismo , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/metabolismo , Animais , Endocitose/fisiologia , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Ratos , Suínos/metabolismo
13.
Biopolymers ; 99(7): 448-59, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616213

RESUMO

Factor VIII (FVIII) is the blood coagulation protein which when defective or deficient causes for hemophilia A, a severe hereditary bleeding disorder. Activated FVIII (FVIIIa) is the cofactor to the serine protease factor IXa (FIXa) within the membrane-bound Tenase complex, responsible for amplifying its proteolytic activity more than 100,000 times, necessary for normal clot formation. FVIII is composed of two noncovalently linked peptide chains: a light chain (LC) holding the membrane interaction sites and a heavy chain (HC) holding the main FIXa interaction sites. The interplay between the light and heavy chains (HCs) in the membrane-bound state is critical for the biological efficiency of FVIII. Here, we present our cryo-electron microscopy (EM) and structure analysis studies of human FVIII-LC, when helically assembled onto negatively charged single lipid bilayer nanotubes. The resolved FVIII-LC membrane-bound structure supports aspects of our previously proposed FVIII structure from membrane-bound two-dimensional (2D) crystals, such as only the C2 domain interacts directly with the membrane. The LC is oriented differently in the FVIII membrane-bound helical and 2D crystal structures based on EM data, and the existing X-ray structures. This flexibility of the FVIII-LC domain organization in different states is discussed in the light of the FVIIIa-FIXa complex assembly and function.


Assuntos
Microscopia Crioeletrônica , Fator VIII , Humanos , Bicamadas Lipídicas , Nanotubos , Ligação Proteica , Estrutura Terciária de Proteína
14.
Austin J Pharmacol Ther ; 1(2)2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25485305

RESUMO

Protein-protein interactions (PPI) are key molecular elements that provide the basis of signaling in virtually all cellular processes. The precision and specificity of these molecular interactions have ignited a strong interest in pursuing PPI surfaces as new targets for drug discovery, especially against ion channels in the central nervous system (CNS) where selectivity and specificity are vital for developing drugs with limited side effects. Ion channels are large transmembrane domain proteins assembled with multiple regulatory proteins binding to the intracellular portion of channels. These macromolecular complexes are difficult to isolate, purify and reconstitute, posing a significant barrier in targeting these PPI for drug discovery purposes. Here, we will provide a short overview of salient features of PPI and discuss successful studies focusing on protein-channel interactions that could inspire new drug discovery campaigns targeting ion channel complexes.

15.
Assay Drug Dev Technol ; 10(2): 148-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22364545

RESUMO

Protein-protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the IκB kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the IκB/NFκB pathways in controlling neuronal excitability through protein-protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein-channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders.


Assuntos
Ativação do Canal Iônico/fisiologia , Luminescência , Proteínas Luminescentes/análise , Canais de Sódio/fisiologia , Algoritmos , Aminoácidos/análise , Animais , Western Blotting , Sobrevivência Celular , DNA/genética , Fatores de Crescimento de Fibroblastos/genética , Vaga-Lumes/química , Teste de Complementação Genética , Vetores Genéticos , Células HEK293 , Humanos , Indicadores e Reagentes , Luciferases/química , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/química , Reação em Cadeia da Polimerase/métodos , Canais de Sódio/química
16.
Adv Colloid Interface Sci ; 166(1-2): 24-35, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21679911

RESUMO

In this review article the theoretical and experimental possibilities of applying EO-methods for estimation of the physico-chemical properties of the organic nanotubes (ONTs) are studied. The ONTs are highly organized nanostructures of strongly elongated, anysometric, and hollow cylinders with a size range of 1 nm to 10,000 nm, e.g. in aqueous solutions they could behave as colloid (disperse) particles. They have high interaction ability due to their extremely large curved, rolled-up external surfaces (bilayers of membrane walls) and unique properties because of their specific electric charge distribution and dynamics that make possible the functionalization of their surfaces. Thus they could template guestsubstances such as membrane proteins and protein complexes on the exterior surfaces and in the membrane. We performed our investigations for the case of ONT aqueous colloid suspension. Following our earlier proposition of the general expression for the electro-optic (EO) effect we derived equations for the evaluation of the electric properties of ONT particles such as mechanism of electric polarization and identification of their most important electric Dipole Moments (DM), permanent (pDM) and induced (iDMs). Further we recommend ways for the calculation of their magnitude and direction. Also we evaluated some geometrical properties such as length of the ONT particles and their polydispersity. The knowledge that we provided about the ONT properties may enable us to elucidate and predict their biological activity. Templating biological active ligands (such as membrane proteins and protein complexes) on the inner and outer surfaces as well as in the surface membrane creates their potential usefulness as carrier and deliverer of biopharmaceuticals in bio-nanodevices. The theoretical equations were compared with the experimental data for ONTs such as (lipid) LNT, Tobacco Mosaic Virus (TMV) and microtubules (MT). Comparison of EO methods with other methods used till now shows that the EO methods are faster, not invasive and do not alter the studied particles.


Assuntos
Óptica e Fotônica/métodos , Eletricidade , Bicamadas Lipídicas/química , Conceitos Matemáticos , Microtúbulos/química , Nanotubos , Vírus do Mosaico do Tabaco/química
17.
J Biol Chem ; 286(3): 1903-10, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21078669

RESUMO

Phosphatidylserine (PS) on apoptotic cells is a target for diagnosis and therapy using annexin A5 (anxA5). Pretargeting is a strategy developed to improve signal to background ratio for molecular imaging and to minimize undesired side effects of pharmacological and radiotherapy. Pretargeting relies on accessibility of the target finder on the surface of the target cell. anxA5 binds PS and crystallizes in a two-dimensional network covering the PS-expressing cell surface. Two-dimensional crystallization is the driving force for anxA5 internalization by PS-expressing cells. Here, we report structure/function analysis of anxA5 internalization. Guided by structural bioinformatics including protein-protein docking, we revealed that the amino acids Arg(63), Lys(70), Lys(101), Glu(138), Asp(139), and Asn(160) engage in intermolecular salt bridges within the anxA5 trimer, which is the basic building block of the two-dimensional network. Disruption of the salt bridges by site-directed mutagenesis does not affect PS binding but inhibits trimer formation and cell entry of surface-bound anxA5. The anxA5 variants with impaired internalization are superior molecular imaging agents in pretargeting strategies as compared with wild-type anxA5.


Assuntos
Anexina A5/farmacologia , Apoptose , Imagem Molecular/métodos , Engenharia de Proteínas , Anexina A5/química , Anexina A5/genética , Cristalografia por Raios X , Humanos , Células Jurkat , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Estrutura Quaternária de Proteína
18.
Microbiology (Reading) ; 154(Pt 6): 1775-1782, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18524932

RESUMO

In this study, an MS-based proteomics approach to characterizing the virion structural proteins of the novel marine 'photosynthetic' phage S-PM2 is presented. The virus infects ecologically important cyanobacteria of the genus Synechococcus that make a substantial contribution to primary production in the oceans. The S-PM2 genome encodes 236 ORFs, some of which exhibit similarity to known phage virion structural proteins, but the majority (54%) show no detectable homology to known proteins from other organisms. Using public and in-house bioinformatics tools the proteome of S-PM2 was predicted and a database compatible with MS-based search engines was constructed. S-PM2 virion proteins were resolved by SDS-PAGE, excised, tryptically digested and analysed by LC-ESI-MS/MS. The resulting MS data were searched against the database. A parallel control study was undertaken on the well-characterized coliphage T4 in order to assess the sensitivity and efficiency of this approach. In total, 11 of the 15 S-PM2 proteins, predicted to be virion proteins by bioinformatics approaches, were confirmed as such, together with the identification of a further 12 novel structural proteins. In the case of T4, 24 of the 39 known virion structural proteins were identified, including the major tail-fibre proteins. This approach has wide-ranging applicability and can be applied to any novel organism whose genome encodes ORFs with few detectable homologies in the public databases.


Assuntos
Bacteriófagos/química , Bacteriófagos/metabolismo , Proteômica , Proteínas Estruturais Virais/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Bacteriófagos/genética , Microscopia Crioeletrônica , Bases de Dados de Proteínas , Biologia Marinha , Synechococcus/virologia , Proteínas Estruturais Virais/genética
19.
FEBS Lett ; 582(12): 1657-60, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18435924

RESUMO

Cryo-electron microscopy has the power to visualise lipid membranes at the closest to in vivo conditions. The structure of the lipid bilayer can be well resolved and the interactions between lipid-protein and protein-protein molecules followed at the molecular level. We undertook an extended Cryo-electron microscopy study to follow the factor VIII binding to phosphatidylserine containing lipid nanotubes at different lipid composition. Obtaining well ordered tubes is required to define the factor VIII membrane-bound structure. The observed alterations in the arrangement of the protein molecules are indicative for the flexibility of the membrane-bound factor VIII. Understanding the significance of these conformational changes is essential to comprehend the function of factor VIII in coagulation and as a drug for Hemophilia A.


Assuntos
Fator VIII/química , Bicamadas Lipídicas/química , Nanotubos/química , Fosfatidilserinas/química , Microscopia Crioeletrônica , Fator VIII/genética , Fator VIII/metabolismo , Hemofilia A/metabolismo , Humanos , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Biochem Biophys Res Commun ; 366(2): 288-93, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18039465

RESUMO

Factor VIII (FVIII) is a key protein in blood coagulation, deficiency or malfunction of which causes Haemophilia A. The sole cure for this condition is intravenous administration of FVIII, whose membrane-bound structure we have studied by Cryo-electron microscopy and image analysis. Self-assembled lipid nanotubes were optimised to bind FVIII at close to native conditions. The tubes diameter was constant at 30 nm and the lipid bilayer resolved. The FVIII molecules were well defined, forming an 8.5 nm thick outer layer, and appeared to reach the hydrophobic core of the bilayer. The two known FVIII atomic models were superimposed with the averaged 2D protein densities. The insertion of the FVIII within the membrane was evaluated, reaffirming that the membrane-binding C2 or C1-C2 domain(s) fully penetrate the outer leaflet of the lipid layer. The presented results lay the basis for new models of the FVIII overall orientation and membrane-binding mechanism.


Assuntos
Fator VIII/química , Fator VIII/ultraestrutura , Bicamadas Lipídicas/química , Modelos Químicos , Modelos Moleculares , Nanotubos/química , Nanotubos/ultraestrutura , Sítios de Ligação , Simulação por Computador , Microscopia Crioeletrônica , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...