Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Nucl Med ; 65(5): 753-760, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548350

RESUMO

Hematologic toxicity, although often transient, is the most common limiting adverse effect during somatostatin peptide receptor radionuclide therapy. This study investigated the association between Monte Carlo-derived absorbed dose to the red marrow (RM) and hematologic toxicity in patients being treated for their neuroendocrine tumors. Methods: Twenty patients each receiving 4 treatment cycles of [177Lu]Lu-DOTATATE were included. Multiple-time-point 177Lu SPECT/CT imaging-based RM dosimetry was performed using an artificial intelligence-driven workflow to segment vertebral spongiosa within the field of view (FOV). This workflow was coupled with an in-house macroscale/microscale Monte Carlo code that incorporates a spongiosa microstructure model. Absorbed dose estimates to RM in lumbar and thoracic vertebrae within the FOV, considered as representations of the whole-body RM absorbed dose, were correlated with hematologic toxicity markers at about 8 wk after each cycle and at 3- and 6-mo follow-up after completion of all cycles. Results: The median of absorbed dose to RM in lumbar and thoracic vertebrae within the FOV (D median,vertebrae) ranged from 0.019 to 0.11 Gy/GBq. The median of cumulative absorbed dose across all 4 cycles was 1.3 Gy (range, 0.6-2.5 Gy). Hematologic toxicity was generally mild, with no grade 2 or higher toxicity for platelets, neutrophils, or hemoglobin. However, there was a decline in blood counts over time, with a fractional value relative to baseline at 6 mo of 74%, 97%, 57%, and 97%, for platelets, neutrophils, lymphocytes, and hemoglobin, respectively. Statistically significant correlations were found between a subset of hematologic toxicity markers and RM absorbed doses, both during treatment and at 3- and 6-mo follow-up. This included a correlation between the platelet count relative to baseline at 6-mo follow up: D median,vertebrae (r = -0.64, P = 0.015), D median,lumbar (r = -0.72, P = 0.0038), D median,thoracic (r = -0.58, P = 0.029), and D average,vertebrae (r = -0.66, P = 0.010), where D median,lumbar and D median,thoracic are median absorbed dose to the RM in the lumbar and thoracic vertebrae, respectively, within the FOV and D average,vertebrae is the mass-weighted average absorbed dose of all vertebrae. Conclusion: This study found a significant correlation between image-derived absorbed dose to the RM and hematologic toxicity, including a relative reduction of platelets at 6-mo follow up. These findings indicate that absorbed dose to the RM can potentially be used to understand and manage hematologic toxicity in peptide receptor radionuclide therapy.


Assuntos
Medula Óssea , Tumores Neuroendócrinos , Octreotida , Octreotida/análogos & derivados , Compostos Organometálicos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Octreotida/uso terapêutico , Octreotida/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Medula Óssea/efeitos da radiação , Medula Óssea/diagnóstico por imagem , Idoso , Tumores Neuroendócrinos/radioterapia , Tumores Neuroendócrinos/diagnóstico por imagem , Adulto , Radiometria , Doses de Radiação , Método de Monte Carlo , Doenças Hematológicas/diagnóstico por imagem
2.
Eur J Nucl Med Mol Imaging ; 51(5): 1268-1286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366197

RESUMO

The numbers of diagnostic and therapeutic nuclear medicine agents under investigation are rapidly increasing. Both novel emitters and novel carrier molecules require careful selection of measurement procedures. This document provides guidance relevant to dosimetry for first-in human and early phase clinical trials of such novel agents. The guideline includes a short introduction to different emitters and carrier molecules, followed by recommendations on the methods for activity measurement, pharmacokinetic analyses, as well as absorbed dose calculations and uncertainty analyses. The optimal use of preclinical information and studies involving diagnostic analogues is discussed. Good practice reporting is emphasised, and relevant dosimetry parameters and method descriptions to be included are listed. Three examples of first-in-human dosimetry studies, both for diagnostic tracers and radionuclide therapies, are given.


Assuntos
Medicina Nuclear , Compostos Radiofarmacêuticos , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Radiometria/métodos , Cintilografia , Medicina Nuclear/métodos
3.
Phys Med ; 117: 103192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052710

RESUMO

Absorbed radiation doses are essential in assessing the effects, e.g. safety and efficacy, of radiopharmaceutical therapy (RPT). Patient-specific absorbed dose calculations in the target or the organ at risk require multiple inputs. These include the number of disintegrations in the organ, i.e. the time-integrated activities (TIAs) of the organs, as well as other parameters describing the process of radiation energy deposition in the target tissue (i.e. mean energy per disintegration, radiation dose constants, etc). TIAs are then estimated by incorporating the area under the radiopharmaceutical's time-activity curve (TAC), which can be obtained by quantitative measurements of the biokinetics in the patient (typically based on imaging data such as planar scintigraphy, SPECT/CT, PET/CT, or blood and urine samples). The process of TAC determination/calculation for RPT generally depends on the user, e.g., the chosen number and schedule of measured time points, the selection of the fit function, the error model for the data and the fit algorithm. These decisions can strongly affect the final TIA values and thus the accuracy of calculated absorbed doses. Despite the high clinical importance of the TIA values, there is currently no consensus on processing time-activity data or even a clear understanding of the influence of uncertainties and variations in personalised RPT dosimetry related to user-dependent TAC calculation. As a first step towards minimising site-dependent variability in RPT dosimetry, this work provides an overview of quality assurance and uncertainty management considerations of the TIA estimation.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Radiometria/métodos , Cintilografia
4.
Phys Med ; 117: 103196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104033

RESUMO

PURPOSE: The use of molecular radiotherapy (MRT) has been rapidly evolving over the last years. The aim of this study was to assess the current implementation of dosimetry for MRTs in Europe. METHODS: A web-based questionnaire was open for treating centres between April and June 2022, and focused on 2020-2022. Questions addressed the application of 16 different MRTs, the availability and involvement of medical physicists, software used, quality assurance, as well as the target regions for dosimetry, whether treatment planning and/or verification were performed, and the dosimetric methods used. RESULTS: A total of 173 responses suitable for analysis was received from centres performing MRT, geographically distributed over 27 European countries. Of these, 146 centres (84 %) indicated to perform some form of dosimetry, and 97 % of these centres had a medical physicist available and almost always involved in dosimetry. The most common MRTs were 131I-based treatments for thyroid diseases and thyroid cancer, and [223Ra]RaCl2 for bone metastases. The implementation of dosimetry varied widely between therapies, from almost all centres performing dosimetry-based planning for microsphere treatments to none for some of the less common treatments (like 32P sodium-phosphate for myeloproliferative disease and [89Sr]SrCl2 for bone metastases). CONCLUSIONS: Over the last years, implementation of dosimetry, both for pre-therapeutic treatment planning and post-therapy absorbed dose verification, increased for several treatments, especially for microsphere treatments. For other treatments that have moved from research to clinical routine, the use of dosimetry decreased in recent years. However, there are still large differences both across and within countries.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Europa (Continente)
5.
Phys Med ; 116: 103166, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926641

RESUMO

The European Council Directive 2013/59/Euratom (BSS Directive) includes optimisation of treatment with radiotherapeutic procedures based on patient dosimetry and verification of the absorbed doses delivered. The present policy statement summarises aspects of three directives relating to the therapeutic use of radiopharmaceuticals and medical devices, and outlines the steps needed for implementation of patient dosimetry for radioactive drugs. To support the transition from administrations of fixed activities to personalised treatments based on patient-specific dosimetry, EFOMP presents a number of recommendations including: increased networking between centres and disciplines to support data collection and development of codes-of-practice; resourcing to support an infrastructure that permits routine patient dosimetry; research funding to support investigation into individualised treatments; inter-disciplinary training and education programmes; and support for investigator led clinical trials. Close collaborations between the medical physicist and responsible practitioner are encouraged to develop a similar pathway as is routine for external beam radiotherapy and brachytherapy. EFOMP's policy is to promote the roles and responsibilities of medical physics throughout Europe in the development of molecular radiotherapy to ensure patient benefit. As the BSS directive is adopted throughout Europe, unprecedented opportunities arise to develop informed treatments that will mitigate the risks of under- or over-treatments.


Assuntos
Medicina Nuclear , Humanos , Radiometria , Políticas , Europa (Continente)
6.
Pediatr Radiol ; 53(12): 2502-2514, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773444

RESUMO

BACKGROUND: The European-funded Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy in Pediatrics (HARMONIC) project is a multicenter cohort study assessing the long-term effects of ionizing radiation in patients with congenital heart disease. Knowledge is lacking regarding the use of ionizing radiation from sources other than cardiac catheterization in this cohort. OBJECTIVE: This study aims to assess imaging frequency and radiation dose (excluding cardiac catheterization) to patients from a single center participating in the Norwegian HARMONIC project. MATERIALS AND METHODS: Between 2000 and 2020, we recruited 3,609 patients treated for congenital heart disease (age < 18 years), with 33,768 examinations categorized by modality and body region. Data were retrieved from the radiology information system. Effective doses were estimated using International Commission on Radiological Protection Publication 60 conversion factors, and the analysis was stratified into six age categories: newborn; 1 year, 5 years, 10 years, 15 years, and late adolescence. RESULTS: The examination distribution was as follows: 91.0% conventional radiography, 4.0% computed tomography (CT), 3.6% diagnostic fluoroscopy, 1.2% nuclear medicine, and 0.3% noncardiac intervention. In the newborn to 15 years age categories, 4-12% had ≥ ten conventional radiography studies, 1-8% underwent CT, and 0.3-2.5% received nuclear medicine examinations. The median effective dose ranged from 0.008-0.02 mSv and from 0.76-3.47 mSv for thoracic conventional radiography and thoracic CT, respectively. The total effective dose burden from thoracic conventional radiography ranged between 28-65% of the dose burden from thoracic CT in various age categories (40% for all ages combined). The median effective dose for nuclear medicine lung perfusion was 0.6-0.86 mSv and for gastrointestinal fluoroscopy 0.17-0.27 mSv. Because of their low frequency, these procedures contributed less to the total effective dose than thoracic radiography. CONCLUSION: This study shows that CT made the largest contribution to the radiation dose from imaging (excluding cardiac intervention). However, although the dose per conventional radiograph was low, the large number of examinations resulted in a substantial total effective dose. Therefore, it is important to consider the frequency of conventional radiography while calculating cumulative dose for individuals. The findings of this study will help the HARMONIC project to improve risk assessment by minimizing the uncertainty associated with cumulative dose calculations.


Assuntos
Cardiopatias Congênitas , Adolescente , Criança , Humanos , Recém-Nascido , Estudos de Coortes , Fluoroscopia/efeitos adversos , Cardiopatias Congênitas/diagnóstico por imagem , Doses de Radiação , Radiação Ionizante , Lactente , Pré-Escolar
7.
EJNMMI Phys ; 10(1): 47, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37603123

RESUMO

INTRODUCTION: 212Pb is a promising radionuclide for targeted alpha therapy. Here, the feasibility of visualising the tumour uptake and biodistribution of 212Pb-NG001 in mice with a clinical SPECT/CT scanner was investigated. METHODS: A mouse phantom with 212Pb was imaged with a clinical- and a preclinical SPECT/CT scanner. Different acquisition and reconstruction settings were investigated on the clinical system (Siemens Symbia Intevo Bold). Two athymic nude mice carrying PC-3 PIP prostate cancer tumours of 235-830 µl received 1.44 MBq of 212Pb-NG001 and were imaged 2, 6, and 24 h post-injection on the clinical SPECT/CT with a Medium Energy collimator and a 40% energy window centred on 79 keV. All acquisition times were 30 min, except the mouse imaging 24 h post-injection which was 60 min. After the final imaging, the organs were harvested and measured on a gamma counter to give an indication of how much activity was present in organs of interest at the last imaging time point. RESULTS: Four volumes in the mouse phantom of ~ 300 µl with 246-303 kBq/ml of 212Pb were distinguishable on images acquired with the clinical SPECT/CT with a high number of reconstruction updates. With the preclinical SPECT, the same volumes were easily distinguished with 49 kBq/ml of 212Pb. Clinical SPECT/CT images of the mice revealed uptake in tumours and bladders 2 h after injection and in tumours containing down to approximately 15 kBq/ml at 6 and 24 h after injection. CONCLUSION: Although the preclinical scanner should be used preferentially in biodistribution studies in mice, the clinical SPECT/CT confirmed uptake in small volumes (e.g. ~ 300 µl volume with ~ 250 kBq/ml). Regardless of system, the resolution and sensitivity limits should be carefully determined, otherwise false negative or too low uptakes can be wrongly interpreted.

8.
Leukemia ; 37(10): 2107-2114, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37568010

RESUMO

18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET) positivity after first-line treatment with autologous stem cell transplantation (ASCT) in multiple myeloma is strongly correlated with reduced progression-free and overall survival. However, PET-positive patients who achieve PET negativity after treatment seem to have comparable outcomes to patients who were PET negative at diagnosis. Hence, giving PET-positive patients additional treatment may improve their outcome. In this phase II study, we screened first-line patients with very good partial response (VGPR) or better after ASCT with PET. PET-positive patients received four 28-day cycles of carfilzomib-lenalidomide-dexamethasone (KRd). Flow cytometry-based minimal residual disease (MRD) analysis was performed before and after treatment for correlation with PET. Overall, 159 patients were screened with PET. A total of 53 patients (33%) were PET positive and 57% of PET-positive patients were MRD negative, demonstrating that these response assessments are complementary. KRd consolidation converted 33% of PET-positive patients into PET negativity. MRD-negative patients were more likely to convert than MRD-positive patients. In summary, PET after ASCT detected residual disease in a substantial proportion of patients in VGPR or better, even in patients who were MRD negative, and KRd consolidation treatment changed PET status in 33% of patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Resultado do Tratamento , Transplante Autólogo , Neoplasia Residual/diagnóstico , Tomografia por Emissão de Pósitrons , Dexametasona/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Transplante de Células-Tronco
9.
J Nucl Med ; 64(7): 1131-1137, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268424

RESUMO

In preparation for an α-particle therapy trial using 1-7 MBq of 224Ra, the feasibility of tomographic SPECT/CT imaging was of interest. The nuclide decays in 6 steps to stable 208Pb, with 212Pb as the principle photon-emitting nuclide. 212Bi and 208Tl emit high-energy photons up to 2,615 keV. A phantom study was conducted to determine the optimal acquisition and reconstruction protocol. Methods: The spheres of a body phantom were filled with a 224Ra-RaCl2 solution, and the background compartment was filled with water. Images were acquired on a SPECT/CT system. In addition, 30-min scans were acquired for 80- and 240-keV emissions, using triple-energy windows, with both medium-energy and high-energy collimators. Images were acquired at 90-95 and 29-30 kBq/mL, plus an explorative 3-min acquisition at 20 kBq/mL (using only the optimal protocol). Reconstructions were performed with attenuation correction only, attenuation plus scatter correction, 3 levels of postfiltering, and 24 levels of iterative updates. Acquisitions and reconstructions were compared using the maximum value and signal-to-scatter peak ratio for each sphere. Monte Carlo simulations were performed to examine the contributions of key emissions. Results: Secondary photons of the 2,615-keV 208Tl emission produced in the collimators make up most of the acquired energy spectrum, as revealed by Monte Carlo simulations, with only a small fraction (3%-6%) of photons in each window providing useful information for imaging. Still, decent image quality is possible at 30 kBq/mL, and nuclide concentrations are imageable down to approximately 2-5 kBq/mL. The overall best results were obtained with the 240-keV window, medium-energy collimator, attenuation and scatter correction, 30 iterations and 2 subsets, and a 12-mm gaussian postprocessing filter. However, all combinations of the applied collimators and energy windows were capable of producing adequate results, even though some failed to reconstruct the 2 smallest spheres. Conclusion: SPECT/CT imaging of 224Ra in equilibrium with daughters is possible, with sufficient image quality to provide clinical utility for the current trial of intraperitoneally administrated activity. A systematic scheme for optimization was designed to select acquisition and reconstruction settings.


Assuntos
Chumbo , Radioisótopos de Tálio , Fótons , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Cintilografia , Imagens de Fantasmas , Método de Monte Carlo , Processamento de Imagem Assistida por Computador/métodos
12.
Eur J Nucl Med Mol Imaging ; 50(7): 1861-1868, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086275

RESUMO

Dosimetry can be a useful tool for personalization of molecular radiotherapy (MRT) procedures, enabling the continuous development of theranostic concepts. However, the additional resource requirements are often seen as a barrier to implementation. This guide discusses the requirements for dosimetry and demonstrates how a dosimetry regimen can be tailored to the available facilities of a centre. The aim is to help centres wishing to initiate a dosimetry service but may not have the experience or resources of some of the more established therapy and dosimetry centres. The multidisciplinary approach and different personnel requirements are discussed and key equipment reviewed example protocols demonstrating these factors are given in the supplementary material for the main therapies carried out in nuclear medicine, including [131I]-NaI for benign thyroid disorders, [177Lu]-DOTATATE and 131I-mIBG for neuroendocrine tumours and [90Y]-microspheres for unresectable hepatic carcinoma.


Assuntos
Tumores Neuroendócrinos , Radiometria , Humanos , Radiometria/métodos , Radioisótopos do Iodo , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/radioterapia , 3-Iodobenzilguanidina
13.
Front Med (Lausanne) ; 10: 1058914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844217

RESUMO

Aim: Two ongoing phase I studies are investigating the use of radium-224 adsorbed to calcium carbonate micro particles (224Ra-CaCO3-MP) to treat peritoneal metastasis originating from colorectal or ovarian cancer. The aim of this work was to study the level of radiation exposure from the patients to workers at the hospital, carers and members of the public. Method: Six patients from the phase 1 trial in patients with colorectal cancer were included in this study. Two days after cytoreductive surgery, they were injected with 7 MBq of 224Ra-CaCO3-MP. At approximately 3, 24 and 120 h after injection, the patients underwent measurements with an ionization chamber and a scintillator-based iodide detector, and whole body gamma camera imaging. The patient was modelled as a planar source to calculate dose rate as a function of distance. Scenarios varying in duration and distance from the patient were created to estimate the potential effective doses from external exposure. Urine and blood samples were collected at approximately 3, 6, 24, 48 and 120 h after injection of 224Ra-CaCO3-MP, to estimate the activity concentration of 224Ra and 212Pb. Results: The patients' median effective whole-body half-life of 224Ra-CaCO3-MP ranged from 2.6 to 3.5 days, with a mean value of 3.0 days. In the scenarios with exposure at the hospital (first 8 days), sporadic patient contact resulted in a range of 3.9-6.8 µSv per patient, and daily contact resulted in 4.3-31.3 µSv depending on the scenario. After discharge from the hospital, at day 8, the highest effective dose was received by those with close daily contact; 18.7-83.0 µSv. The highest activity concentrations of 224Ra and 212Pb in urine and blood were found within 6 h, with maximum values of 70 Bq/g for 224Ra and 628 Bq/g for 212Pb. Conclusion: The number of patients treated with 224Ra-CaCO3-MP that a single hospital worker - involved in extensive care - can receive per year, before effective doses of 6 mSv from external exposure is exceeded, is in the order of 200-400. Members of the public and family members are expected to receive well below 0.25 mSv, and therefore, no restrictions to reduce external exposure should be required.

14.
Cancers (Basel) ; 15(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831477

RESUMO

PURPOSE: The aim of this paper was to investigate correlations between pre- therapeutic [68Ga]Ga-DOTA-TOC uptake and absorbed dose to tumours from therapy with [177Lu]Lu-DOTA-TATE. METHODS: This retrospective study included 301 tumours from 54 GEP-NET patients. The tumours were segmented on pre-therapeutic [68Ga]Ga-DOTA-TOC PET/CT, and post-therapy [177Lu]Lu-DOTA-TATE SPECT/CT images, using a fixed 40% threshold. The SPECT/CT images were used for absorbed dose calculations by assuming a linear build-up from time zero to day one, and mono-exponential wash-out after that. Both SUVmean and SUVmax were measured from the PET images. A linear absorbed-dose prediction model was formed with SUVmean as the independent variable, and the accuracy was tested with a split 70-30 training-test set. RESULTS: Mean SUVmean and SUVmax from [68Ga]Ga-DOTA-TOC PET was 24.0 (3.6-84.4) and 41.0 (6.7-146.5), and the mean absorbed dose from [177Lu]Lu-DOTA-TATE was 26.9 Gy (2.4-101.9). A linear relationship between SUVmean and [177Lu]Lu-DOTA-TATE activity concentration at 24 h post injection was found (R2 = 0.44, p < 0.05). In the prediction model, a root mean squared error and a mean absolute error of 1.77 and 1.33 Gy/GBq, respectively, were found for the test set. CONCLUSIONS: There was a high inter- and intra-patient variability in tumour measurements, both for [68Ga]Ga-DOTA-TOC SUVs and absorbed doses from [177Lu]Lu-DOTA-TATE. Depending on the required accuracy, [68Ga]Ga-DOTA-TOC PET imaging may estimate the [177Lu]Lu-DOTA-TATE uptake. However, there could be a high variance between predicted and actual absorbed doses.

15.
Semin Nucl Med ; 53(3): 413-425, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36635112

RESUMO

Systemic radioimmunotherapy (RIT) is arguably the most effective and least toxic anticancer treatment for non-Hodgkin lymphoma (NHL). In treatment-naïve patients with indolent NHL, the efficacy of a single injection of RIT compares with that of multiple cycles of combination chemotherapy. However, 20 years following the approval of the first CD20-targeting radioimmunoconjugates 90Y-Ibritumomab-tiuxetan (Zevalin) and 131I-tositumomab (Bexxar), the number of patients referred for RIT in western countries has dramatically decreased. Notwithstanding this, the development of RIT has continued. Therapeutic targets other than CD20 have been identified, new vector molecules have been produced allowing for faster delivery of RIT to the target, and innovative radionuclides with favorable physical characteristics such as alpha emitters have been more widely available. In this article, we reviewed the current status of RIT in NHL, with particular focus on recent clinical and preclinical developments.


Assuntos
Linfoma de Células B , Linfoma não Hodgkin , Radioimunoterapia , Humanos , Linfoma de Células B/radioterapia , Linfoma de Células B/tratamento farmacológico , Linfoma não Hodgkin/radioterapia , Linfoma não Hodgkin/tratamento farmacológico , Radioisótopos de Ítrio/uso terapêutico
16.
Int J Cardiol ; 372: 122-129, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460211

RESUMO

PURPOSE: Response to cardiac resynchronization therapy (CRT) is reduced in patients with high left ventricular (LV) scar burden, in particular when scar is located in the LV lateral wall or septum. Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) can identity scar, but is not feasible in all patients. This study investigates if myocardial metabolism by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and contractile function by echocardiographic strain are alternatives to LGE-CMR. METHODS: In a prospective multicenter study, 132 CRT candidates (91% with left bundle branch block) were studied by speckle tracking strain echocardiography, and 53 of these by FDG-PET. Regional myocardial FDG metabolism and peak systolic strain were compared to LGE-CMR as reference method. RESULTS: Reduced FDG metabolism (<70% relative) precisely identified transmural scars (≥50% of myocardial volume) in the LV lateral wall, with area under the curve (AUC) 0.96 (95% confidence interval (CI) 0.90-1.00). Reduced contractile function by strain identified transmural scars in the LV lateral wall with only moderate accuracy (AUC = 0.77, CI 0.71-0.84). However, absolute peak systolic strain >10% could rule out transmural scar with high sensitivity (80%) and high negative predictive value (96%). Neither FDG-PET nor strain identified septal scars (for both, AUC < 0.80). CONCLUSIONS: In CRT candidates, FDG-PET is an excellent alternative to LGE-CMR to identify scar in the LV lateral wall. Furthermore, preserved strain in the LV lateral wall has good accuracy to rule out transmural scar. None of the modalities can identify septal scar. CLINICAL TRIAL REGISTRATION: The present study is part of the clinical study "Contractile Reserve in Dyssynchrony: A Novel Principle to Identify Candidates for Cardiac Resynchronization Therapy (CRID-CRT)", which was registered at clinicaltrials.gov (identifier NCT02525185).


Assuntos
Terapia de Ressincronização Cardíaca , Cicatriz , Humanos , Cicatriz/diagnóstico por imagem , Ventrículos do Coração , Meios de Contraste , Estudos Prospectivos , Fluordesoxiglucose F18 , Gadolínio , Ecocardiografia/métodos , Tomografia por Emissão de Pósitrons , Terapia de Ressincronização Cardíaca/métodos
18.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080198

RESUMO

A search in PubMed revealed that 72 radionuclides have been considered for molecular or functional targeted radionuclide therapy. As radionuclide therapies increase in number and variations, it is important to understand the role of the radionuclide and the various characteristics that can render it either useful or useless. This review focuses on the physical characteristics of radionuclides that are relevant for radionuclide therapy, such as linear energy transfer, relative biological effectiveness, range, half-life, imaging properties, and radiation protection considerations. All these properties vary considerably between radionuclides and can be optimised for specific targets. Properties that are advantageous for some applications can sometimes be drawbacks for others; for instance, radionuclides that enable easy imaging can introduce more radiation protection concerns than others. Similarly, a long radiation range is beneficial in targets with heterogeneous uptake, but it also increases the radiation dose to tissues surrounding the target, and, hence, a shorter range is likely more beneficial with homogeneous uptake. While one cannot select a collection of characteristics as each radionuclide comes with an unchangeable set, all the 72 radionuclides investigated for therapy-and many more that have not yet been investigated-provide numerous sets to choose between.


Assuntos
Radioisótopos , Meia-Vida , Radioisótopos/uso terapêutico
19.
EJNMMI Phys ; 9(1): 52, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35925521

RESUMO

BACKGROUND: Lead-212 (212Pb) is a promising radionuclide for targeted therapy, as it decays to α-particle emitter bismuth-212 (212Bi) via ß-particle emission. This extends the problematic short half-life of 212Bi. In preparation for upcoming clinical trials with 212Pb, the feasibility of quantitative single photon-emission computed tomography/computed tomography (SPECT/CT) imaging of 212Pb was studied, with the purpose to explore the possibility of individualised patient dosimetric estimation. RESULTS: Both acquisition parameters (combining two different energy windows and two different collimators) and iterative reconstruction parameters (varying the iterations x subsets between 10 × 1, 15 × 1, 30 × 1, 30 × 2, 30 × 3, 30 × 4, and 30 × 30) were investigated to evaluate visual quality and quantitative uncertainties based on phantom images. Calibration factors were determined using a homogeneous phantom and were stable when the total activity imaged exceeded 1 MBq for all the imaging protocols studied, but they increased sharply as the activity decayed below 1 MBq. Both a 20% window centred on 239 keV and a 40% window on 79 keV, with dual scatter windows of 5% and 20%, respectively, could be used. Visual quality at the lowest activity concentrations was improved with the High Energy collimator and the 79 keV energy window. Fractional uncertainty in the activity quantitation, including uncertainties from calibration factors and small volume effects, in spheres of 2.6 ml in the NEMA phantom was 16-21% for all protocols with the 30 × 4 filtered reconstruction except the High Energy collimator with the 239 keV energy window. Quantitative analysis was possible both with and without filters, but the visual quality of the images improved with a filter. CONCLUSIONS: Only minor differences were observed between the imaging protocols which were all determined suitable for quantitative imaging of 212Pb. As uncertainties generally decreased with increasing iterative updates in the reconstruction and recovery curves did not converge with few iterations, a high number of reconstruction updates are recommended for quantitative imaging.

20.
Mol Imaging Biol ; 24(5): 842-851, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35501622

RESUMO

PURPOSE: [18F]FDG PET/CT in multiple myeloma (MM) is currently the best technology to demonstrate patchy and extramedullary disease. However, [18F]FDG PET has some limitations, and imaging with alternative tracers should be explored. In this study, we aimed to evaluate the performance of [18F]fluciclovine PET compared to [18F]FDG PET in newly diagnosed MM patients. PROCEDURES: Thirteen newly diagnosed transplant eligible MM patients were imaged both with [18F]FDG PET/CT and [18F]fluciclovine PET/CT within 1 week in a prospective study. The subjects were visually assessed positive or negative for disease. The number of lesions and the SUVmax of selected lesions were measured for both tracers. Furthermore, tracer uptake ratios were obtained by dividing lesion SUVmax by blood or bone marrow SUVmax. Between-group differences and correlations were assessed with paired t-tests and Pearson tests. Bone marrow SUVs were compared to bone marrow plasma cell percentage in biopsy samples. RESULTS: Nine subjects were assessed positively by [18F]FDG PET (69%) and 12 positives by [18F]fluciclovine PET (92%). All positive subjects had [18F]fluciclovine scans that were qualitatively scored as easier to interpret visually than the [18F]FDG scans. The number of lesions was also higher; seven of nine subjects with distinct hot spots on [18F]fluciclovine PET had fewer or no visible lesions on [18F]FDG PET. The mean lesion SUVmax values were 8.2 and 3.8 for [18F]fluciclovine and [18F]FDG, respectively. The mean tumour to blood values were 6.4 and 2.0 for [18F]fluciclovine and [18F]FDG, and the mean ratios between tumour and bone marrow were 2.1 and 1.5 for [18F]fluciclovine and [18F]FDG. The lesion SUVmax and ratios were significantly higher for [18F]fluciclovine (all p < 0.01). Local [18F]fluciclovine SUVmax or SUVmean values in os ilium and the percentage of plasma cells in bone marrow biopsies were linearly correlated (p = 0.048). There were no significant correlations between [18F]FDG SUVs and plasma cells (p = 0.82). CONCLUSIONS: Based on this pilot study, [18F]fluciclovine is a promising tracer for MM. The visual and semi-quantitative evaluations indicate that [18F]fluciclovine PET/CT can out-perform [18F]FDG PET/CT at diagnosis.


Assuntos
Fluordesoxiglucose F18 , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/patologia , Projetos Piloto , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Prospectivos , Compostos Radiofarmacêuticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...