Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 173070, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734087

RESUMO

Despite the increasing evidence for rapid thermal evolution in natural populations, evolutionary rescue under global warming may be constrained by the presence of other stressors. Highly relevant in our polluted planet, is the largely ignored evolutionary trade-off between heat tolerance and tolerance to pollutants. By using two subpopulations (separated 40 years in time) from a resurrected natural population of the water flea Daphnia magna that experienced a threefold increase in heat wave frequency during this period, we tested whether rapid evolution of heat tolerance resulted in reduced tolerance to the widespread metal zinc and whether this would affect heat tolerance upon exposure to the pollutant. Our results revealed rapid evolution of increased heat tolerance in the recent subpopulation. Notably, the sensitivity to the metal tended to be stronger (reduction in net energy budget) or was only present (reductions in heat tolerance and in sugar content) in the recent subpopulation. As a result, the rapidly evolved higher heat tolerance of the recent subpopulation was fully offset when exposed to zinc. Our results highlight that the many reports of evolutionary rescue to global change stressors may give a too optimistic view as our warming planet is polluted by metals and other pollutants.

2.
PLoS One ; 19(2): e0295707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394143

RESUMO

Global warming and invasive species, separately or combined, can impose a large impact on the condition of native species. However, we know relatively little about how these two factors, individually and in combination, shape phenotypes in ectotherms across life stages and how this can differ between populations. We investigated the non-consumptive predator effects (NCEs) imposed by native (perch) and invasive (signal crayfish) predators experienced only during the egg stage or during both the egg and larval stages in combination with warming on adult life history traits of the damselfly Ischnura elegans. To explore microgeographic differentiation, we compared two nearby populations differing in thermal conditions and predator history. In the absence of predator cues, warming positively affected damselfly survival, possibly because the warmer temperature was closer to the optimal temperature. In the presence of predator cues, warming decreased survival, indicating a synergistic effect of these two variables on survival. In one population, predator cues from perch led to increased survival, especially under the current temperature, likely because of predator stress acclimation phenomena. While warming decreased, predator cues increased larval development time with a proportionally stronger effect of signal crayfish cues experienced during the egg stage, indicating a negative carry-over effect from egg to larva. Warming and predator cues increased mass at emergence, with the predator effect driven mainly by exposure to signal crayfish cues during the egg stage, indicating a positive carry-over effect from egg to adult. Notably, warming and predator effects were not consistent across the two studied populations, suggesting a phenotypic signal of adaptation at a microgeographic scale to thermal conditions and predator history. We also observed pronounced shifts during ontogeny from synergistic (egg and early larval stage) toward additive (late larval stage up to emergence) effects between warming and predator stress. The results point out that population- and life-stage-specific responses in life-history traits to NCEs are needed to predict fitness consequences of exposure to native and invasive predators and warming in prey at a microgeographic scale.


Assuntos
Odonatos , Animais , Odonatos/fisiologia , Larva/fisiologia , Temperatura , Comportamento Predatório/fisiologia
3.
Evol Lett ; 8(1): 172-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370544

RESUMO

Predicting if, when, and how populations can adapt to climate change constitutes one of the greatest challenges in science today. Here, we build from contributions to the special issue on evolutionary adaptation to climate change, a survey of its authors, and recent literature to explore the limits and opportunities for predicting adaptive responses to climate change. We outline what might be predictable now, in the future, and perhaps never even with our best efforts. More accurate predictions are expected for traits characterized by a well-understood mapping between genotypes and phenotypes and traits experiencing strong, direct selection due to climate change. A meta-analysis revealed an overall moderate trait heritability and evolvability in studies performed under future climate conditions but indicated no significant change between current and future climate conditions, suggesting neither more nor less genetic variation for adapting to future climates. Predicting population persistence and evolutionary rescue remains uncertain, especially for the many species without sufficient ecological data. Still, when polled, authors contributing to this special issue were relatively optimistic about our ability to predict future evolutionary responses to climate change. Predictions will improve as we expand efforts to understand diverse organisms, their ecology, and their adaptive potential. Advancements in functional genomic resources, especially their extension to non-model species and the union of evolutionary experiments and "omics," should also enhance predictions. Although predicting evolutionary responses to climate change remains challenging, even small advances will reduce the substantial uncertainties surrounding future evolutionary responses to climate change.

4.
Evol Lett ; 8(1): 76-88, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370551

RESUMO

Due to global change, many species are shifting their distribution and are thereby confronted with novel thermal conditions at the moving range edges. Especially during the initial phases of exposure to a new environment, it has been hypothesized that plasticity and associated epigenetic mechanisms enable species to cope with environmental change. We tested this idea by capitalizing on the well-documented southward range expansion of the damselfly Ischnura elegans from France into Spain where the species invaded warmer regions in the 1950s in eastern Spain (old edge region) and in the 2010s in central Spain (new edge region). Using a common garden experiment at rearing temperatures matching the ancestral and invaded thermal regimes, we tested for evolutionary changes in (thermal plasticity in) larval life history and heat tolerance in these expansion zones. Through the use of de- and hypermethylating agents, we tested whether epigenetic mechanisms play a role in enabling heat tolerance during expansion. We used the phenotype of the native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. New edge populations converged toward the phenotype of the native species through plastic thermal responses in life history and heat tolerance while old edge populations (partly) constitutively evolved a faster life history and higher heat tolerance than the core populations, thereby matching the native species. Only the heat tolerance of new edge populations increased significantly when exposed to the hypermethylating agent. This suggests that the DNA methylation machinery is more amenable to perturbation at the new edge and shows it is able to play a role in achieving a higher heat tolerance. Our results show that both (evolved) plasticity as well as associated epigenetic mechanisms are initially important when facing new thermal regimes but that their importance diminishes with time.

5.
Trends Ecol Evol ; 39(2): 165-174, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37863775

RESUMO

The concept of eco-evolutionary (eco-evo) dynamics, stating that ecological and evolutionary processes occur at similar time scales and influence each other, has contributed to our understanding of responses of populations, communities, and ecosystems to environmental change. Phenotypes, central to these eco-evo processes, can be strongly impacted by the gut microbiome. The gut microbiome shapes eco-evo dynamics in the host community through its effects on the host phenotype. Complex eco-evo feedback loops between the gut microbiome and the host communities might thus be common. Bottom-up dynamics occur when eco-evo interactions shaping the gut microbiome affect host phenotypes with consequences at population, community, and ecosystem levels. Top-down dynamics occur when eco-evo dynamics shaping the host community structure the gut microbiome.


Assuntos
Ecossistema , Microbioma Gastrointestinal , Evolução Biológica
6.
Evol Appl ; 16(8): 1503-1515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37622092

RESUMO

Many species are currently adapting to cities at different latitudes. Adaptation to urbanization may require eco-evolutionary changes in response to temperature and invasive species that may differ between latitudes. Here, we studied single and combined effects of increased temperatures and an invasive alien predator on the phenotypic response of replicated urban and rural populations of the damselfly Ischnura elegans and contrasted these between central and high latitudes. Adult females were collected in rural and urban ponds at central and high latitudes. Their larvae were exposed to temperature treatments (current [20°C], mild warming [24°C], and heat wave [28°C; for high latitude only]) crossed with the presence or absence of chemical cues released by the spiny-cheek crayfish (Faxonius limosus), only present at the central latitude. We measured treatment effects on larval development time, mass, and growth rate. Urbanization type affected all life history traits, yet these responses were often dependent on latitude, temperature, and sex. Mild warming decreased mass in rural and increased growth rate in urban populations. The effects of urbanization type on mass were latitude-dependent, with central-latitude populations having a greater phenotypic difference. Urbanization type effects were sex-specific with urban males being lighter and having a lower growth rate than rural males. At the current temperature and mild warming, the predator cue reduced the growth rate, and this independently of urbanization type and latitude of origin. This pattern was reversed during a heat wave in high-latitude damselflies. Our results highlight the context-dependency of evolutionary and plastic responses to urbanization, and caution for generalizing how populations respond to cities based on populations at a single latitude.

7.
Sci Total Environ ; 875: 162617, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871721

RESUMO

The combined impact of toxicants and warming on organisms is getting increased attention in ecotoxicology, but is still hard to predict, especially with regard to heat waves. Recent studies suggested that the gut microbiome may provide mechanistic insights into the single and combined stressor effects on their host. We therefore investigated effects of sequential exposure to a heat spike and a pesticide on both the phenotype (life history and physiology) and the gut microbiome composition of damselfly larvae. We compared the fast-paced Ischnura pumilio, which is more tolerant to both stressors, with the slow-paced I. elegans, to obtain mechanistic insights into species-specific stressor effects. The two species differed in gut microbiome composition, potentially contributing to their pace-of-life differences. Intriguingly, there was a general resemblance between the stressor response patterns in the phenotype and in the gut microbiome, whereby both species responded broadly similar to the single and combined stressors. The heat spike negatively affected the life history of both species (increased mortality, reduced growth rate), which could be explained not only by shared negative effects on physiology (inhibition of acetylcholinesterase, increase of malondialdehyde), but also by shared effects on gut bacterial species' abundances. The pesticide only had negative effects (reduced growth rate, reduced net energy budget) in I. elegans. The pesticide generated shifts in the bacterial community composition (e.g. increased abundance of Sphaerotilus and Enterobacteriaceae in the gut microbiome of I. pumilio), which potentially contributed to the relatively higher pesticide tolerance of I. pumilio. Moreover, in line with the response patterns in the host phenotype, the effects of the heat spike and the pesticide on the gut microbiome were mainly additive. By contrasting two species differing in stress tolerance, our results suggest that response patterns in the gut microbiome may improve our mechanistic understanding of single and combined stressor effects.


Assuntos
Microbioma Gastrointestinal , Odonatos , Praguicidas , Animais , Praguicidas/toxicidade , Temperatura Alta , Acetilcolinesterase
8.
Environ Pollut ; 326: 121438, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963457

RESUMO

Ecotoxicological studies considerably improved realism by assessing the toxicity of pollutants at different temperatures. Nevertheless, they may miss key interaction patterns between pollutants and temperature by typically considering only part of the natural thermal gradient experienced by species and ignoring daily temperature fluctuations (DTF). We therefore tested in a common garden laboratory experiment the effects of the pesticide chlorpyrifos across a range of mean temperatures and DTF on physiological traits (related to oxidative stress and bioenergetics) in low- and high-latitude populations of Ischnura elegans damselfly larvae. As expected, the impact of chlorpyrifos varied along the wide range of mean temperatures (12-34 °C). None of the physiological traits (except the superoxide anion levels) were affected by chlorpyrifos at the intermediate mean temperatures (20-24 °C). Instead, most of them were negatively affected by chlorpyrifos (reduced activity levels of the antioxidant defense enzymes superoxide dismutase [SOD], catalase [CAT] and peroxidase [PER], and a reduced energy budget) at the very high (≥28 °C) or extreme high temperatures (≥32 °C), and to lesser extent at the lower mean temperatures (≤16 °C). Notably, at the lower mean temperatures the negative impact of chlorpyrifos was often only present or stronger under DTF. Although the chlorpyrifos effects on the physiological traits greatly depended on the experimentally imposed thermal gradient, patterns were mainly consistent across the natural latitude-associated thermal gradient, indicating the generality of our results. The thermal patterns in chlorpyrifos-induced physiological responses contributed to the observed toxicity patterns in life history (reduced survival and growth at low and high mean temperatures). Taken together, our results underscore the importance of evaluating pesticide toxicity along a temperature gradient and of taking a mechanistic approach with a focus on physiology, to improve our understanding of the combined effects of pollutants and temperature in natural populations.


Assuntos
Clorpirifos , Poluentes Ambientais , Odonatos , Praguicidas , Animais , Clorpirifos/toxicidade , Praguicidas/toxicidade , Temperatura , Aquecimento Global , Temperatura Alta , Poluentes Ambientais/farmacologia , Larva
9.
Environ Pollut ; 326: 121471, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958652

RESUMO

To improve the ecological risk assessment of aquatic pollutants it is needed to study their effects not only in the aquatic larval stage, but also in the terrestrial adult stage of the many animals with a complex life cycle. This remains understudied, especially with regard to interactive effects between aquatic pollutants and natural abiotic stressors. We studied effects of exposure to the pesticide DNP (2,4-Dinitrophenol) and how these were modulated by limited food availability in the aquatic larvae, and the possible delayed effects in the terrestrial adults of the damselfly Lestes viridis. Our results revealed that DNP and low food each had large negative effects on the life history, behaviour and to a lesser extent on the physiology of not only the larvae, but also the adults. Food limitation magnified the negative effects of DNP as seen by a strong decline in larval survival, metamorphosis success and adult lifespan. Notably, the synergism between the aquatic pollutant and food limitation for survival-related traits was stronger in the non-exposed adults than in the exposed larvae, likely because metamorphosis is stressful itself. Our results highlight that identifying effects of aquatic pollutants and synergisms with natural abiotic stressors, not only in the aquatic larval but also in the terrestrial adult stage, is crucial to fully assess the ecological impact of aquatic pollutants and to reveal the impact on the receiving terrestrial ecosystem through a changed aquatic-terrestrial subsidy.


Assuntos
Poluentes Ambientais , Animais , Larva , Poluentes Ambientais/farmacologia , Ecossistema , Metamorfose Biológica , Estágios do Ciclo de Vida
10.
Environ Sci Technol ; 57(8): 3270-3279, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787409

RESUMO

Ecotoxicological studies typically cover only a limited part of the natural thermal range of populations and ignore daily temperature fluctuations (DTFs). Therefore, we may miss important stressor interaction patterns and have poor knowledge on how pollutants affect thermal performance curves (TPCs), which is needed to improve insights into the fate of populations to warming in a polluted world. We tested the single and combined effects of pesticide exposure and DTFs on the TPCs of low- and high-latitude populations of Ischnura elegans damselfly larvae. While chlorpyrifos did not have any effect at the intermediate mean temperatures (20-24 °C), it became toxic (reflecting synergisms) at lower (≤16 °C, reduced growth) and especially at higher (≥28 °C, reduced survival and growth) mean temperatures, resulting in more concave-shaped TPCs. Remarkably, these toxicity patterns were largely consistent at both latitudes and hence across a natural thermal gradient. Moreover, DTFs magnified the pesticide-induced survival reductions at 34 °C. The TPC perspective allowed us to identify different toxicity patterns and interaction types (mainly additive vs synergistic) across the thermal gradient. This highlights the importance of using thermal gradients to make more realistic predictions about the impact of pesticides in a warming world and of warming in a polluted world.


Assuntos
Clorpirifos , Praguicidas , Animais , Temperatura Alta , Aquecimento Global , Praguicidas/toxicidade , Clorpirifos/toxicidade , Temperatura , Larva
11.
Proc Biol Sci ; 290(1990): 20222289, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629114

RESUMO

Species may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water flea Daphnia magna. The heat-selected Daphnia showed evolutionary shifts of the unimodal TPCs for survival, fecundity at first clutch and intrinsic population growth rate toward higher optimum temperatures, and a less pronounced downward curvature indicating a better ability to keep fitness high across a range of high temperatures. We detected no evolution of the linear TPCs for somatic growth, mass and development rate, and for the traits related to energy gain (ingestion rate) and costs (metabolic rate). As a result, also the relative thermal slope of energy gain versus energy costs did not vary. These results suggest the overall (rather than per capita) top-down impact of D. magna may increase under rapid thermal evolution.


Assuntos
Daphnia , Temperatura Alta , Animais , Daphnia/fisiologia , Fertilidade , Fenótipo , Crescimento Demográfico , Temperatura
12.
Sci Total Environ ; 855: 158829, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116637

RESUMO

The integration of life-history, physiological and behavioural traits into the pace-of-life generates a powerful framework to understand trait variation in nature both along environmental gradients and in response to environmental stressors. While the gut microbiome has been hypothesized as a candidate mechanism to underlie differentiation in the pace-of-life, this has been rarely studied. We investigated the role of the gut microbiome in contributing to the differentiation in pace-of-life and in thermal adaptation between populations of Ischnura elegans damselfly larvae inhabiting warmer low latitudes and colder high latitudes. We carried out a common-garden experiment, whereby we manipulated the exposure of the damselfly larvae to two key global warming factors: 4 °C warming and a 30 °C heat wave. Comparing the bacterial composition of the food source and the bacterioplankton indicated that damselfly larvae differentially take up bacteria from the surrounding environment and have a resident and functionally relevant microbiome. The gut microbiome differed between larvae of both latitudes, and this was associated with the host's latitudinal differentiation in activity, a key pace-of-life trait. Under heat wave exposure, the gut microbial community composition of high-latitude larvae converged towards that of the low-latitude larvae, with an increase in bacteria that likely are important in providing energy to cope with the heat wave. This suggests an adaptive latitude-specific shift in the gut microbiota matching the better ability of low-latitude hosts to deal with heat extremes. In general, our study provides evidence for the gut microbiome contributing to latitudinal differentiation in both the pace-of-life and in heat adaptation in natural populations.


Assuntos
Microbioma Gastrointestinal , Odonatos , Animais , Odonatos/fisiologia , Aquecimento Global , Larva , Temperatura Alta , Bactérias
13.
Ecotoxicol Environ Saf ; 249: 114416, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321694

RESUMO

The ecological risk assessment of microplastics under global warming receives increasing attention. Yet, such studies mostly focused on increased mean temperatures (MT), ignoring another key component of global warming, namely daily temperature fluctuations (DTF). Moreover, we know next to nothing about the combined effects of multigenerational exposure to microplastics and warming. In this study, Daphnia magna was exposed to an environmentally relevant concentration of polystyrene microplastics (5 µg L-1) under six thermal conditions (MT: 20 â„ƒ, 24 â„ƒ; DTF: 0 â„ƒ, 5 â„ƒ, 10 â„ƒ) over two generations to investigate the interactive effects of microplastics and global warming. Results showed that microplastics had no effects on Daphnia at standard thermal conditions (constant 20 °C). Yet, microplastics increased the fecundity, heat tolerance, amount of energy storage, net energy budget and cytochrome P450 activity, and decreased the energy consumption when tested under an increased MT or DTF, indicating a hormesis effect induced by microplastics under warming. The unexpected increase in heat tolerance upon exposure to microplastics could be partly explained by the reduced energy consumption and/or increased energy availability. Overall, the present study highlighted the importance of including DTF and multigenerational exposure to improve the ecological risk assessment of microplastics under global warming.


Assuntos
Termotolerância , Poluentes Químicos da Água , Animais , Aquecimento Global , Microplásticos , Daphnia magna , Plásticos , Temperatura , Hormese , Daphnia , Poluentes Químicos da Água/análise
14.
Environ Microbiome ; 17(1): 53, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324162

RESUMO

BACKGROUND: Riverine ecosystems are one of the most important reservoirs of antibiotic resistance genes (ARGs) in the environment, but the occurrence and controlling factors of ARG distribution in different habitats of riverine ecosystems remain poorly understood. In this study, a metagenomic approach was used to characterize ARG types and their abundance in different habitats (rhizosphere soil, surface bulk soil, bottom bulk soil, and sediment) of riverine ecosystems in eastern China. Sampling sites were located along different rivers of eastern China, which are geographically isolated. Differences in bacterial communities, mobile genetic elements (MGEs), pattern and intensity of human activities, climate, and other environmental factors at the sampling sites and habitats were expected to affect ARG occurrence. RESULTS: ARGs were observed with high variations in diversity (44-206 subtypes) and abundance (6.85-105.68 ×/Gb). There were significant south-north differences in ARG occurrence in the same habitat, except for surface bulk soil. And the significant difference was found in ARGs among four southern habitats. South-north differences in ARGs of the same habitat were mainly attributed to the combination of different occurrence frequencies and habitat selections of ARGs. Differences in ARG profiles among the four habitats in the south and the north were both mainly attributed to the different occurrence frequencies of ARGs. Bacterial communities and MGEs (Mobile genetic elements) could account for the observed variance in the resistome of riverine ecosystems across eastern China. The co-occurrences of specific ARGs with bacterial communities and MGEs were more frequent at the northern sampling sites than in the south, and co-occurrence patterns (i.e. ARGs and bacterial communities or ARGs and MGEs) varied between the habitats. Moreover, building land in all habitats, except bulk soils, showed significant positive correlations with ARG abundance. CONCLUSION: This study reveals a high variance in the resistome of riverine ecosystems in eastern China and its controlling factors. We appeal to the importance of assessment of ARGs in the riverine ecosystem and the need for future prevention and intervention of ARG spread.

15.
Sci Rep ; 12(1): 17324, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243749

RESUMO

Differences in hatching dates can shape intraspecific interactions through size-mediated priority effects (SMPE), a phenomenon where bigger, early hatched individuals gain advantage over smaller, late hatched ones. However, it remains unclear to what extent and how SMPE are affected by key environmental factors such as warming and predation risk imposed by top predators. We studied effects of warming (low and high temperature) and predation risk (presence and absence of predator cues of perch) on SMPE in life history and physiological traits in the cannibalistic damselfly Ischnura elegans. We induced SMPE in the laboratory by manipulating hatching dates, creating following groups: early and late hatchlings reared in separate containers, and mixed phenology groups where early and late hatchlings shared the same containers. We found strong SMPE for survival and emergence success, with the highest values in early larvae of mixed phenology groups and the lowest values in late larvae of mixed phenology groups. Neither temperature nor predator cues affected SMPE for these two traits. The other life history traits (development rate and mass at emergence) did not show SMPE, but were affected by temperature and predator cues. A tendency for SMPE was found for protein content, in the high temperature treatment. The other physiological traits (phenoloxidase activity and fat content) showed fixed expressions across treatments, indicating decoupling between physiology and life history. The results underline that SMPEs are trait-dependent, and only weakly or not affected by temperature and predation risk.


Assuntos
Odonatos , Comportamento Predatório , Animais , Canibalismo , Larva/fisiologia , Monofenol Mono-Oxigenase , Odonatos/fisiologia
17.
Insects ; 13(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35886798

RESUMO

Under climate warming, temperate ectotherms are expected to hatch earlier and grow faster, increase the number of generations per season, i.e., voltinism. Here, we studied, under laboratory conditions, the impact of artificial warming and manipulated hatching dates on life history (voltinism, age and mass at emergence and growth rate) and physiological traits (phenoloxidase (PO) activity at emergence, as an indicator of investment in immune function) and larval survival rate in high-latitude populations of the damselfly Ischnura elegans. Larvae were divided into four groups based on crossing two treatments: early versus late hatching dates and warmer versus control rearing temperature. Damselflies were reared in groups over the course of one (univoltine) or two (semivoltine) growth seasons, depending on the voltinism. Warming temperature did not affect survival rate. However, warming increased the number of univoltine larvae compared to semivoltine larvae. There was no effect of hatching phenology on voltinism. Early hatched larvae reared under warming had elevated PO activity, regardless of their voltinism, indicating increased investment in immune function against pathogens. Increased PO activity was not associated with effects on age or mass at emergence or growth rate. Instead, life history traits were mainly affected by temperature and voltinism. Warming decreased development time and increased growth rate in univoltine females, yet decreased growth rate in univoltine males. This indicates a stronger direct impact of warming and voltinism compared to impacts of hatching phenology on life history traits. The results strengthen the evidence that phenological shifts in a warming world may affect physiology and life history in freshwater insects.

18.
Ecotoxicol Environ Saf ; 240: 113697, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653979

RESUMO

Exposure to pesticides can have detrimental effects on aquatic communities of non-target species. Populations can evolve tolerance to pesticides which may rescue them from extinction. However, the evolution of tolerance does not always occur and insights in the underlying mechanisms are scarce. One understudied mechanism to obtain pesticide tolerance in hosts are shifts toward pesticide-degrading bacteria in their microbiome. We carried out experimental evolution trials where replicated experimental populations of the water flea Daphnia magna were exposed to the pesticide chlorpyrifos or a solvent control, after which we performed acute toxicity assays to evaluate the evolution of chlorpyrifos tolerance. Additionally, we quantified changes in the microbiota community composition of whole body and gut samples to assess which sample type best reflected the pesticide tolerance of the Daphnia host. As expected, chlorpyrifos-selected clones became more tolerant to chlorpyrifos as shown by the higher EC5048 h (36% higher) compared with the control clones. This was associated with shifts in the microbiome composition whereby the abundance of known organophosphate-degrading bacterial genera increased on average ~4 times in the chlorpyrifos-selected clones. Moreover, the abundances of several genera, including the organophosphate-degrading bacteria Pseudomonas, Flavobacterium and Bacillus, were positively correlated with the EC5048 h of the host populations. These shifts in bacterial genera were similar in magnitude in whole body and gut samples, yet the total abundance of organophosphate-degrading bacteria was ~6 times higher in the whole body samples, suggesting that the gut is not the only body part where pesticide degradation by the microbiome occurs. Our results indicate that the microbiome is an important mediator of the development of tolerance to pesticides in Daphnia.


Assuntos
Clorpirifos , Cladocera , Microbiota , Praguicidas , Animais , Clorpirifos/toxicidade , Daphnia , Praguicidas/toxicidade
19.
Environ Pollut ; 308: 119654, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738518

RESUMO

Despite the surging interest in the interactions between toxicants and non-chemical stressors, and in evolutionary ecotoxicology, we have poor knowledge whether these patterns differ among genotypes within a population. Warming and toxicants are two widespread stressors in aquatic systems that are known to modify each other's effects. We studied to what extent effects of sequential exposure to a heat spike and the pesticide esfenvalerate differed among genotypes in the water flea Daphnia magna. Esfenvalerate had similar negative effects on survival and body size across genotypes, and for most genotypes it increased time to maturation, yet the effects on the reproductive performance were only detected in some genotypes and were inconsistent in direction. Across genotypes, the heat spike increased the heat tolerance, yet the negative effects of the heat spike on survival, reproductive performance and body size, and the positive effects on grazing rate and the shortened time to maturation were only seen in some genotypes. Notably, the interaction type between both stressors differed among genotypes. In contrast to our expectation, the impact of esfenvalerate was only magnified by the heat spike in some genotypes and only for a subset of the traits. For survival and time to maturation, the interaction type for the same stressor combination covered all three categories: additions, synergisms and antagonisms. This illustrates that categorizing the interaction type between stressors at the level of populations may hide considerable intrapopulation variation among genotypes. Opposite to our expectation, the more pesticide-tolerant genotypes showed a stronger synergism between both stressors. Genotype-dependent interaction patterns between toxicants and non-chemical stressors may explain inconsistencies among studies and challenges ecological risk assessment based on single genotypes. The observed genetic differences in the responses to the (combined) stressors may fuel the evolution of the stressor interaction pattern, a largely ignored topic in evolutionary ecotoxicology.


Assuntos
Praguicidas , Animais , Daphnia/fisiologia , Variação Genética , Temperatura Alta , Larva , Praguicidas/toxicidade
20.
Proc Biol Sci ; 289(1974): 20220188, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506228

RESUMO

Predators can strongly influence prey populations through both consumptive and non-consumptive effects. Nevertheless, most studies have focused on the consumptive effects in driving evolutionary changes. By integrating experimental evolution and resurrection ecology, we tested the roles of non-consumptive and consumptive effects in driving evolution in a Daphnia magna population that experienced strong changes in fish predation pressure. All resurrected genotypes were pooled, inoculated in outdoor mesocosms, and exposed to free-fish or caged-fish treatments. Non-consumptive effects induced rapid, repeatable changes in the clonal composition and associated genotypic trait changes that were similar in magnitude and direction to those imposed by killing. Both non-consumptive and consumptive effects caused a shift towards a dominance of the high-fish period clones that can perform better under fish predation, and this may be explained by the higher intrinsic growth rate of the high-fish period clones under predation risk. The genotypic trait changes (e.g. reduced body sizes, earlier maturation, more and smaller offspring) of the Daphnia in the mesocosm experiments were in the same direction as the adaptive trait shifts observed in situ through resurrection ecology. Our results demonstrate that non-consumptive effects can induce rapid adaptive evolution and may represent an overlooked driver of eco-evolutionary dynamics.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Daphnia , Ecologia , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...