Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(6): 3852-3865, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36877935

RESUMO

Compounds that inhibit glutathione peroxidase 4 (GPX4) hold promise as cancer therapeutics in their ability to induce a form of nonapoptotic cell death called ferroptosis. Our research identified 24, a structural analog of the potent GPX4 inhibitor RSL3, that has much better plasma stability (t1/2 > 5 h in mouse plasma). The bioavailability of 24 provided efficacious plasma drug concentrations with IP dosing, thus enabling in vivo studies to assess tolerability and efficacy. An efficacy study in mouse using a GPX4-sensitive tumor model found that doses of 24 up to 50 mg/kg were tolerated for 20 days but had no effect on tumor growth, although partial target engagement was observed in tumor homogenate.


Assuntos
Ferroptose , Neoplasias , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Disponibilidade Biológica
2.
Mol Pharm ; 19(7): 2367-2379, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35481355

RESUMO

Dasabuvir is a non-nucleoside polymerase inhibitor for the treatment of hepatitis C virus (HCV) infection. It is an extremely weak diacidic drug (pKa = 8.2 and 9.2) and a prolific solvate former. Due to its exceedingly low aqueous solubility (≤0.127 µg/mL at pH 1-6.8, dose number of 1.31 × 104), crystalline dasabuvir free acid exhibited poor oral bioavailability in initial animal pharmacokinetic (PK) assessment. This necessitated the development of enabling formulation for human clinical studies to achieve the required therapeutic in vivo concentration of dasabuvir. While salt formation has been widely used to enhance the solubility and dissolution rate of solids, this approach has rarely been applied to develop oral solid dosage forms for acidic drugs as weak as dasabuvir due to concerns of rapid disproportionation and crystallization of its free acid. In this contribution, we detail our efforts in identifying dasabuvir monosodium monohydrate as a drug substance that is stable, manufacturable, and, most importantly, significantly enhances the dissolution and oral absorption of this poorly soluble drug. The oral delivery of dasabuvir through the salt approach has enabled the commercialization of the triple-combination direct-acting antiviral HCV regimen, Viekira Pak. The methodologies and solutions identified in targeted studies to overcome technical challenges encountered along the way (i.e., incorporation of polymers to inhibit crystallization and disproportionation and species mapping to enable salt manufacturing process, etc.) can be applied to other insoluble compounds.


Assuntos
Hepatite C Crônica , Hepatite C , Animais , Antivirais/uso terapêutico , Disponibilidade Biológica , Hepacivirus , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Preparações Farmacêuticas , Solubilidade
3.
Sci Rep ; 10(1): 18535, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116200

RESUMO

Amorphous solid dispersion (ASD) is a widely employed formulation technique for drugs with poor aqueous solubility. Polymers are integral components of ASDs, but mechanisms by which polymers lead to the generation and maintenance of supersaturated solutions, which enhance oral absorption in vivo, are poorly understood. Herein, a diverse group of newly synthesized cellulose derivatives was evaluated for their ability to inhibit crystallization of enzalutamide, a poorly soluble compound used to treat prostate cancer. ASDs were prepared from selected polymers, specifically a somewhat hydrophobic polymer that was extremely effective at inhibiting drug crystallization, and a less effective, but more hydrophilic, crystallization inhibitor, that might afford better release. Drug membrane transport rate was evaluated in vitro and compared to in vivo performance, following oral dosing in rats. Good correlation was noted between the in vitro diffusion cell studies and the in vivo data. The ASD formulated with the less effective crystallization inhibitor outperformed the ASD prepared with the highly effective crystallization inhibitor in terms of the amount and rate of drug absorbed in vivo. This study provides valuable insight into key factors impacting oral absorption from enabling ASD formulations, and how best to evaluate such formulations using in vitro approaches.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Feniltioidantoína/análogos & derivados , Animais , Benzamidas , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Masculino , Nitrilas , Feniltioidantoína/administração & dosagem , Feniltioidantoína/química , Feniltioidantoína/farmacologia , Polímeros/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Solubilidade , Água/química
4.
Mol Pharm ; 16(8): 3617-3625, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31260625

RESUMO

Crystallization of drug from an amorphous formulation is expected to negatively impact its bioperformance following oral delivery. In evaluating this in vivo, neat crystalline drug is typically mixed with the amorphous formulation. However, this approach may not adequately mimic the effect of drug crystals that form within the amorphous matrix, because crystal properties are highly dependent on the crystallization environment. The aim of this study was to evaluate the in vivo impact of crystals formed in a generic tacrolimus amorphous formulation, relative to noncrystallized formulations and a reference suspension containing neat crystalline drug. Crystallization of tacrolimus was induced in the generic product by exposing it to moderate temperatures and high relative humidity. Controlled levels of crystallinity in the formulations were achieved by mixing maximally crystallized and fresh formulations at the desired ratios. These formulations were then characterized in vitro and used for oral dosing to beagle dogs. Analysis of blood concentrations versus time revealed that formulations containing 50 and 100% crystalline tacrolimus resulted in lower area under the curve (AUC) and maximum concentration (Cmax) values as compared to the fresh amorphous formulation. However, the AUC and the Cmax values for these formulations were significantly higher than those observed after dosing the pure crystalline tacrolimus suspension. The innovator formulation, Prograf, showed comparable pharmacokinetics before and after exposure to accelerated stability conditions, confirming the robustness of the innovator product to drug crystallization. This study provides insight into the impact of endogenously crystallized material on the oral absorption of a poorly water-soluble compound and highlights the importance of using representative crystalline material when undertaking risk assessment of amorphous formulations.


Assuntos
Absorção Gastrointestinal , Tacrolimo/farmacocinética , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Química Farmacêutica , Cristalização , Cães , Feminino , Masculino , Solubilidade , Tacrolimo/administração & dosagem , Tacrolimo/química , Equivalência Terapêutica , Água/química , Difração de Raios X
5.
PLoS Negl Trop Dis ; 13(2): e0007159, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30818326

RESUMO

There is a significant need for improved treatments for onchocerciasis and lymphatic filariasis, diseases caused by filarial worm infection. In particular, an agent able to selectively kill adult worms (macrofilaricide) would be expected to substantially augment the benefits of mass drug administration (MDA) with current microfilaricides, and to provide a solution to treatment of onchocerciasis / loiasis co-infection, where MDA is restricted. We have identified a novel macrofilaricidal agent, Tylosin A (TylA), which acts by targeting the worm-symbiont Wolbachia bacterium. Chemical modification of TylA leads to improvements in anti-Wolbachia activity and oral pharmacokinetic properties; an optimized analog (ABBV-4083) has been selected for clinical evaluation.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Filaricidas/farmacologia , Tilosina/análogos & derivados , Tilosina/farmacologia , Wolbachia/efeitos dos fármacos , Animais , Antibacterianos/farmacocinética , Filariose Linfática/tratamento farmacológico , Feminino , Filaricidas/farmacocinética , Filarioidea/efeitos dos fármacos , Filarioidea/microbiologia , Gerbillinae , Camundongos , Camundongos Endogâmicos BALB C , Oncocercose/tratamento farmacológico , Simbiose/efeitos dos fármacos
6.
J Control Release ; 292: 172-182, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30408553

RESUMO

Enzalutamide is a fast crystallizing, hydrophobic compound that has solubility limited absorption in vivo. Given the low aqueous solubility of this compound, it was of interest to evaluate amorphous formulations in vitro and in vivo. Amorphous solid dispersions (ASD) of enzalutamide were prepared with the hydrophilic polymers, hydroxypropyl methylcellulose acetate succinate (HPMCAS) and copovidone (PVPVA). A side-by-side diffusion cell was developed as an in vitro characterization tool to discriminate enzalutamide ASDs based upon the solute thermodynamic activity achieved during dissolution and its impact on the subsequent membrane transport rates, phase behavior, and drug speciation. The same formulations were then tested in vivo in rats using oral dosing of ASD suspensions. Different levels of plasma exposure were observed between the ASDs, which could be correlated to the phase behaviors of the ASDs following dissolution. Unsurprisingly, ASDs that underwent crystallization show lower plasma exposures. However, differences were also observed between ASDs that dissolved to form nanosized amorphous drug aggregates versus those that dissolved to yield only supersaturated solutions, with the former outperforming the latter in terms of the plasma exposure. These observations highlight the importance of thoroughly understanding the phase behavior of an amorphous formulation following dissolution and the need to discriminate between different types of precipitation, specifically crystallization versus glass liquid phase separation to form nanosized amorphous aggregates.


Assuntos
Antineoplásicos/química , Feniltioidantoína/análogos & derivados , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Benzamidas , Transporte Biológico , Cristalização , Liberação Controlada de Fármacos , Absorção Intestinal , Masculino , Membranas Artificiais , Nitrilas , Feniltioidantoína/sangue , Feniltioidantoína/química , Feniltioidantoína/farmacocinética , Ratos Sprague-Dawley , Solubilidade
7.
J Med Chem ; 61(9): 4052-4066, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29653491

RESUMO

Curative interferon and ribavirin sparing treatments for hepatitis C virus (HCV)-infected patients require a combination of mechanistically orthogonal direct acting antivirals. A shared component of these treatments is usually an HCV NS5A inhibitor. First generation FDA approved treatments, including the component NS5A inhibitors, do not exhibit equivalent efficacy against HCV virus genotypes 1-6. In particular, these first generation NS5A inhibitors tend to select for viral drug resistance. Ombitasvir is a first generation HCV NS5A inhibitor included as a key component of Viekira Pak for the treatment of patients with HCV genotype 1 infection. Since the launch of next generation HCV treatments, functional cure for genotype 1-6 HCV infections has been achieved, as well as shortened treatment duration across a wider spectrum of genotypes. In this paper, we show how we have modified the anchor, linker, and end-cap architecture of our NS5A inhibitor design template to discover a next generation NS5A inhibitor pibrentasvir (ABT-530), which exhibits potent inhibition of the replication of wild-type genotype 1-6 HCV replicons, as well as improved activity against replicon variants demonstrating resistance against first generation NS5A inhibitors.


Assuntos
Antivirais/química , Antivirais/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Desenho de Fármacos , Hepacivirus/efeitos dos fármacos , Pirrolidinas/química , Pirrolidinas/farmacologia , Animais , Antivirais/farmacocinética , Benzimidazóis/farmacocinética , Genótipo , Hepacivirus/genética , Hepacivirus/fisiologia , Camundongos , Pirrolidinas/farmacocinética , Relação Estrutura-Atividade , Distribuição Tecidual , Replicação Viral/efeitos dos fármacos
8.
Bioorg Med Chem Lett ; 26(22): 5462-5467, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27780635

RESUMO

Research toward a next-generation HCV NS5A inhibitor has identified fluorobenzimidazole analogs that demonstrate potent, broad-genotype in vitro activity against HCV genotypes 1-6 replicons as well as HCV NS5A variants that are orders of magnitude less susceptible to inhibition by first-generation NS5A inhibitors in comparison to wild-type replicons. The fluorobenzimidazole inhibitors have improved pharmacokinetic properties in comparison to non-fluorinated benzimidazole analogs. Discovery of these inhibitors was facilitated by exploring SAR in a structurally simplified inhibitor series.


Assuntos
Antivirais/química , Antivirais/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Hepacivirus/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/farmacocinética , Benzimidazóis/farmacocinética , Cães , Genótipo , Halogenação , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Humanos , Camundongos , Ratos , Replicon/efeitos dos fármacos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
9.
Mol Cancer Res ; 13(11): 1465-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26217019

RESUMO

UNLABELLED: Poly(ADP-ribose) polymerases (PARP1, -2, and -3) play important roles in DNA damage repair. As such, a number of PARP inhibitors are undergoing clinical development as anticancer therapies, particularly in tumors with DNA repair deficits and in combination with DNA-damaging agents. Preclinical evidence indicates that PARP inhibitors potentiate the cytotoxicity of DNA alkylating agents. It has been proposed that a major mechanism underlying this activity is the allosteric trapping of PARP1 at DNA single-strand breaks during base excision repair; however, direct evidence of allostery has not been reported. Here the data reveal that veliparib, olaparib, niraparib, and talazoparib (BMN-673) potentiate the cytotoxicity of alkylating agents. Consistent with this, all four drugs possess PARP1 trapping activity. Using biochemical and cellular approaches, we directly probe the trapping mechanism for an allosteric component. These studies indicate that trapping is due to catalytic inhibition and not allostery. The potency of PARP inhibitors with respect to trapping and catalytic inhibition is linearly correlated in biochemical systems but is nonlinear in cells. High-content imaging of γH2Ax levels suggests that this is attributable to differential potentiation of DNA damage in cells. Trapping potency is inversely correlated with tolerability when PARP inhibitors are combined with temozolomide in mouse xenograft studies. As a result, PARP inhibitors with dramatically different trapping potencies elicit comparable in vivo efficacy at maximum tolerated doses. Finally, the impact of trapping on tolerability and efficacy is likely to be context specific. IMPLICATIONS: Understanding the context-specific relationships of trapping and catalytic inhibition with both tolerability and efficacy will aid in determining the suitability of a PARP inhibitor for inclusion in a particular clinical regimen.


Assuntos
Benzimidazóis/farmacologia , Dano ao DNA/efeitos dos fármacos , Indazóis/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Tolerância a Medicamentos , Humanos , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/química
10.
J Am Assoc Lab Anim Sci ; 53(5): 494-501, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25255072

RESUMO

The goal of the current study was to compare the efficacy, adverse effects, and plasma buprenorphine concentrations of sustained-release buprenorphine (SRB) and buprenorphine after subcutaneous administration in dogs undergoing ovariohysterectomy. In a prospective, randomized, blinded design, 20 healthy adult female Beagle dogs underwent routine ovariohysterectomy and received multimodal analgesia consisting of meloxicam and one of two buprenorphine formulations. Dogs were randomly assigned to receive either SRB (0.2 mg/kg SC, once) or buprenorphine (0.02 mg/kg SC every 12 h for 3 d). Blinded observers assessed all dogs by using sedation scores, pain scores, temperature, HR, RR, and general wellbeing. Dogs were provided rescue analgesia with 0.02 mg/kg buprenorphine SC if the postoperative pain score exceeded a prede- termined threshold. Blood samples were collected, and mass spectrometry was used to determine plasma buprenorphine concentrations. Data were analyzed with a linear mixed model and Tukey-Kramer multiple comparison. Age, body weight, anesthetic duration, surgical duration, sevoflurane concentration, and cardiorespiratory variables did not differ significantly between groups. Dogs in both formulation groups had comparable postoperative sedation and pain scores. One dog from each formulation group had breakthrough pain requiring rescue analgesia. Plasma buprenorphine concentrations remained above a hypothesized therapeutic concentration of 0.6 ng/mL for 136.0 ± 11.3 and 10.67 ± 0.84 h for SRB and buprenorphine, respectively. Based on the results of this study, multimodal analgesic regimens consisting of meloxicam and either buprenorphine or SRB are equally efficacious in managing pain associated with an ovariohysterectomy and show comparable side effects.


Assuntos
Analgésicos/administração & dosagem , Buprenorfina/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Histerectomia/veterinária , Ovariectomia/veterinária , Dor Pós-Operatória/tratamento farmacológico , Tiazinas/administração & dosagem , Tiazóis/administração & dosagem , Animais , Citocinas/análise , Cães , Feminino , Humanos , Meloxicam , Medição da Dor/veterinária , Dor Pós-Operatória/veterinária , Estudos Prospectivos , Veias/imunologia
11.
J Am Assoc Lab Anim Sci ; 53(6): 692-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25650977

RESUMO

The opioid buprenorphine has been shown to provide adequate postoperative analgesia in both companion and laboratory animals. However, its use is still hindered by the need for multiple parenteral injections to achieve continuous analgesia. The purpose of the current study was to conduct a pharmacokinetic analysis of 2 new long-acting formulations of buprenorphine-an injectable sustained-release buprenorphine (SRB) and a transdermal buprenorphine (TDB) patch-in healthy Göttingen minipigs by using liquid chromatography-electrospray ionization-tandem mass spectrometry. Administration of 0.18 mg/kg SC SRB and 30 µ g/h TDB achieved AUC(0-Tlast) of 221.6 ± 26.8 and 25.2 ± 3.9 ng × h/mL, respectively, compared with 9.7 ± 1.4 ng*h/mL for 0.02 mg/kg IV buprenorphine. By using a hypothesized therapeutic plasma buprenorphine concentration threshold of 0.1 ng/mL, therapeutic concentrations were achieved at the first study time point (5 to 30 min) and lasted an average of 8.0 ± 1.3 h for intravenous buprenorphine and 264.0 ± 32.2 h for SRB. TDB achieved therapeutic concentrations in 12 to 24 h after patch application, which lasted until the patch was removed at 72 h. The results of this study suggest that SRB and TDB are long-acting alternatives for pain management, and their use could decrease animal handling and stress, thereby simplifying pain management and improving welfare in laboratory swine.


Assuntos
Buprenorfina/administração & dosagem , Buprenorfina/farmacocinética , Porco Miniatura , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacocinética , Animais , Animais de Laboratório , Preparações de Ação Retardada , Masculino , Manejo da Dor , Suínos
12.
J Med Chem ; 50(1): 149-64, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17201418

RESUMO

Starting from a rapidly metabolized adamantane 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitor 22a, a series of E-5-hydroxy-2-adamantamine inhibitors, exemplified by 22d and (+/-)-22f, was discovered. Many of these compounds are potent inhibitors of 11beta-HSD1 and are selective over 11beta-HSD2 for multiple species (human, mouse, and rat), unlike other reported species-selective series. These compounds have good cellular potency and improved microsomal stability. Pharmacokinetic profiling in rodents indicated moderate to large volumes of distribution, short half-lives, and a pharmacokinetic species difference with the greatest exposure measured in rat with 22d. One hour postdose liver, adipose, and brain tissue 11beta-HSD1 inhibition was confirmed with (+/-)-22f in a murine ex vivo assay. Although 5,7-disubstitued-2-adamantamines provided greater stability, a single, E-5-position, polar functional group afforded inhibitors with the best combination of stability, potency, and selectivity. These results indicate that adamantane metabolic stabilization sufficient to obtain short-acting, potent, and selective 11beta-HSD1 inhibitors has been discovered.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Adamantano/análogos & derivados , Adamantano/síntese química , Piperazinas/síntese química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Adamantano/farmacocinética , Animais , Linhagem Celular , Humanos , Técnicas In Vitro , Camundongos , Microssomos Hepáticos/metabolismo , Piperazinas/farmacocinética , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...