Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4109, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750038

RESUMO

Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. First, we characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles are required.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Bicamadas Lipídicas/química , Holografia/métodos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Microfluídica/métodos , Microfluídica/instrumentação , Feminino , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Linhagem Celular Tumoral , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Biomarcadores/análise
2.
Res Sq ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37886549

RESUMO

Label-free detecting multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. Herein, we first thoroughly characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles is required.

3.
ArXiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37608933

RESUMO

Label-free detecting multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. Herein, we first thoroughly characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles is required.

4.
Sci Adv ; 9(33): eadg4417, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585532

RESUMO

Layered hybrid perovskites exhibit emergent physical properties and exceptional functional performances, but the coexistence of lattice order and structural disorder severely hinders our understanding of these materials. One unsolved problem regards how the lattice dynamics are affected by the dimensional engineering of the inorganic frameworks and their interaction with the molecular moieties. Here, we address this question by using a combination of spontaneous Raman scattering, terahertz spectroscopy, and molecular dynamics simulations. This approach reveals the structural dynamics in and out of equilibrium and provides unexpected observables that differentiate single- and double-layered perovskites. While no distinct vibrational coherence is observed in double-layered perovskites, an off-resonant terahertz pulse can drive a long-lived coherent phonon mode in the single-layered system. This difference highlights the dramatic change in the lattice environment as the dimension is reduced, and the findings pave the way for ultrafast structural engineering and high-speed optical modulators based on layered perovskites.

5.
J Phys Chem Lett ; 10(11): 2924-2930, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31066277

RESUMO

We investigate the phase behavior of two-dimensional (C xH2 x+1NH3)2[(MA,FA)PbI3] n-1PbI4 layered perovskites near room temperature (-20 °C to +100 °C) as a function of the octahedral layer thickness ( n = 1, 2, 3, 4), alkylammonium chain length (butyl, pentyl, and hexyl), and identity of the small organic cation (methylammonium and formamidinium). Using differential scanning calorimetry and X-ray diffraction, we observe a reversible first-order phase transition corresponding to a partial melting transition of the alkylammonium chains separating the perovskite layers. The melting temperature, Tm, increases from 10 to 77.9 to 95.9 °C as the carbon chain length increases from C4 to C5 to C6, but it is insensitive to octahedral layer thickness, n. The latent heat of melting, Δ Hm, was in the range of 3-5 kJ/mol-spacer, indicating only partial disordering of the carbon chain. We discuss these findings and their implications in the context of melting in other two-dimensional molecular systems.

6.
Nano Lett ; 18(8): 4633-4640, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29533637

RESUMO

Chiral metallic nanostructures can generate evanescent fields which are more highly twisted than circularly polarized light. However, it remains unclear how best to exploit this phenomenon, hindering the optimal utilization of chiral electromagnetic fields. Here, inspired by optical antenna theory, we address this challenge by introducing chiral antenna parameters: the chirality flux efficiency and the chiral antenna aperture. These quantities, which are based on chirality conservation, quantify the generation and dissipation of chiral light. We then present a label-free experimental technique, chirality flux spectroscopy, which measures the chirality flux efficiency, providing valuable information on chiral near fields in the far field. This principle is verified theoretically and experimentally with two-dimensionally chiral coupled nanorod antennas, for which we show that chiral near and far fields are linearly dependent on the magnetoelectric polarizability. This elementary system confirms our concept to quantify chiral electromagnetic fields and paves the way toward broadly tunable chiral optical applications including ultrasensitive detection of molecular chirality or optical information storage and transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...