Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 212: 105941, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34147644

RESUMO

PURPOSE: The overexposure to synthetic glucocorticoids (GC) during pregnancy can predispose to metabolic diseases during adulthood. Vitamin D is not only crucial for fetal development, but also exerts direct effects on the GC sensitivity and down-regulates GC receptors. Given the vitamin D effects on glucocorticoid-related parameters, we aimed to investigate a possible protective role of maternal vitamin D administration on the glucose homeostasis of rats exposed to dexamethasone in utero. METHODS: Pregnant rats received dexamethasone (0.1 mg/kg, Dex) daily between the 14th and 19th days of pregnancy. A subgroup of dexamethasone-treated dams received oral administration of vitamin D (500UI, DexVD) during the whole gestation. The corresponding control groups of dams were included (CTL and VD groups, respectively). Male and female offspring were evaluated at 3, 6 and 12 months of age. RESULTS: Prenatal exposure to dexamethasone caused metabolic disruption in an age and sex-dependent manner being the older male offspring more susceptible to insulin resistance, fatty liver and beta-cell mass expansion than females. Furthermore, we demonstrated that prenatal GC led to glucose intolerance in male and female offspring in an age-dependent manner. Maternal vitamin D administration did not influence glucose intolerance but attenuated the insulin resistance, liver lipid accumulation and prevented the beta-cell mass expansion caused by prenatal dexamethasone in the male offspring. CONCLUSION: Maternal vitamin D administration mitigates metabolic disturbances that occur later in life in male rats exposed to GC in utero. Moreover, our data suggest vitamin D as an important nutritional supplement for pregnant overexposed to GC during gestation.


Assuntos
Dexametasona/efeitos adversos , Glucocorticoides/efeitos adversos , Doenças Metabólicas/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Animais , Feminino , Células Secretoras de Insulina/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Troca Materno-Fetal , Doenças Metabólicas/sangue , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Wistar , Caracteres Sexuais , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Vitamina D/farmacologia , Vitaminas/farmacologia
2.
Life Sci ; 264: 118599, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127510

RESUMO

Administration of dexamethasone (DEX) during late gestation is a model to study growth restriction in rodents, but the pup's mortality index can be high, depending on DEX dosage, and little is known about the effects of DEX on maternal care (MC). Considering that an inadequate MC can also contribute to pup's mortality in this model, we evaluated the effects of DEX on dams' behavior and its consequences on offspring survival. We also investigated whether the cross-fostering of pups from dams treated or not with DEX could improve pup's survival. Wistar rats were treated with DEX (14th to 19th day of gestation -0.2 mg/kg, B.W, in the drinking water). Nest building, MC and responses in the elevated plus-maze, forced swimming and object recognition tests were evaluated. DEX reduced gestational weight gain and impaired neonatal development, reducing pup's survival to 0% by the 3rd postnatal day. DEX-treated dams reduced the expression of typical MC and increased anxiety-like behaviors. After cross-fostering, DEX-treated mothers behaved similarly to controls, indicating that a healthy offspring is crucial to induce adequate MC. Cross-fostering increased the survival index from zero to 25% in the DEX offspring. Postnatal development of the DEX offspring was comparable to controls after cross-fostering. We concluded that exposure to DEX during late gestation causes behavioral changes that compromise the maternal emotional state, disrupting the expression of MC. Although it does not seem to be the main cause of pup's mortality, our data indicate that an adequate MC improves pup's survival in this model.


Assuntos
Anti-Inflamatórios/toxicidade , Dexametasona/toxicidade , Comportamento Materno/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/mortalidade , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/administração & dosagem , Dexametasona/administração & dosagem , Feminino , Masculino , Comportamento Materno/fisiologia , Comportamento Materno/psicologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Wistar , Taxa de Sobrevida/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...