Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(27): 12192-12201, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35786901

RESUMO

The world is currently suffering socially, economically, and politically from the recent pandemic outbreak due to the coronavirus disease 2019 (COVID-19), and those in hospitals, schools, and elderly nursing homes face enhanced threats. Healthcare textiles, such as masks and medical staff gowns, are susceptible to contamination of various pathogenic microorganisms, including bacteria and viruses. Metal-organic frameworks (MOFs) can potentially address these challenges due to their tunable reactivity and ability to be incorporated as porous coatings on textile materials. Here, we report how incorporating titanium into the zirconium-pyrene-based MOF NU-1000, denoted as NU-1012, generates a highly reactive biocidal photocatalyst. This MOF features a rare ligand migration phenomenon, and both the Ti/Zr center and the pyrene linker act synergistically as dual active centers and widen the absorption band for this material, which results in enhanced reactive oxygen species generation upon visible light irradiation. Additionally, we found that the ligand migration process is generally applicable to other csq topology Zr-MOFs. Importantly, NU-1012 can be easily incorporated onto cotton textile cloths as a coating, and the resulting composite material demonstrates fast and potent biocidal activity against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus epidermidis), and T7 bacteriophage virus with up to a 7-log(99.99999%) reduction within 1 h under simulated daylight.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Estruturas Metalorgânicas , Idoso , COVID-19/prevenção & controle , Escherichia coli , Humanos , Ligantes , Estruturas Metalorgânicas/farmacologia , Pirenos , Titânio/farmacologia
2.
J Am Chem Soc ; 144(27): 12092-12101, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35786950

RESUMO

Ceria-based materials have been highly desired in photocatalytic reactions due to their redox properties and strong oxygen storage and transfer ability. Herein, we report the structures of one CeCe70 oxysulfate cluster and four MCe70 clusters (M = Cu, Ni, Co, and Fe) with the same Ce70 core. As noted, single-crystal X-ray diffraction confirmed the structures of CeCe70 and the MCe70 series, while Raman spectroscopy indicated an increase in oxygen defects upon the introduction of Cu and Fe ions. The clusters catalyzed the oxidation of 4-methoxybenzyl alcohol under ultraviolet light. CuCe70 and FeCe70 exhibited enhanced reactivity compared to CeCe70 and improved aldehyde selectivity compared to control experiments. In comparison with their homogeneous congeners, the CeCe70/MCe70 clusters altered the location of radical generation from the bulk solution to the clusters' surfaces. Mechanistic studies highlight the role of oxygen defects and specific transition metal introduction for efficient photocatalysis. The mechanistic pathway in this study provides insight into how to select or design a highly selective catalyst for photocatalysis.

3.
J Am Chem Soc ; 144(6): 2685-2693, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129331

RESUMO

Owing to their switchable spin states and dynamic electronic character, organic-based radical species have been invoked in phenomena unique to a variety of fields. When incorporated in solid state materials, generation of organic radicals proves challenging due to aggregation. Metal-organic frameworks (MOFs) are promising candidates for immobilization and stabilization of organic radicals because of the tunable spatial arrangement of organic linkers and metal nodes, which sequesters the reactive species. Herein, a flexible, redox-active tetracarboxylic acid linker bearing two imidazole units was chosen to construct a new Zr6-MOF, NU-910, with scu topology. By exploiting the structural flexibility of NU-910, we successfully modulate the dynamics between an isolated organic radical species and an organic radical π-dimer species in the MOF system. Single-crystal X-ray diffraction analysis reveals that through solvent exchange from N,N-diethylformamide to acetone, NU-910 undergoes a structural contraction with interlinker distances decreasing from 8.32 Å to 3.20 Å at 100 K. Organic radical species on the bridging linkers are generated via UV light irradiation. Direct observation of temperature-induced spin switches from an isolated radical species to a magnetically silent radical π-dimer in NU-910 after irradiation in the solid state was achieved via variable-temperature single-crystal X-ray diffraction and variable-temperature electron paramagnetic resonance spectroscopy. Ultraviolet-visible-near infrared spectroscopy and density functional theory calculations further substantiated the formation of a radical cation π-dimer upon irradiation. This work demonstrates the potential of using flexible MOFs as a platform to modulate radical spin states in the solid phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...