Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(11): e0240434, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33151973

RESUMO

Increasing urbanisation has led to a greater use of artificial structures by bats as alternative roost sites. Despite the widespread presence of bats, roost availability may restrict their distribution and abundance in urban environments. There is limited quantitative information on the drivers of bat roost selection and roosting preferences, particularly in African bats. We explore the factors influencing roost selection in the Mauritian tomb bat (Taphozous mauritianus), within an urban landscape in Lilongwe city, Malawi. Eight building and five landscape features of roosts were compared with both adjacent and random control buildings throughout the city. Bat occupied buildings were situated closer to woodland (mean 709m) compared to random buildings (mean 1847m) but did not differ in any other landscape features explored. Roosts were situated on buildings with larger areas and taller walls, suggesting bats select features for predator-avoidance and acoustic perception when leaving the roost. Bats preferred buildings with exposed roof beams which may provide refuge from disturbance. Whilst roosts are situated more often on brick walls, this feature was also associated with landscape features, therefore its importance in roost selection is less clear. These results are indicative that T. mauritianus selects roosts at both the building and landscape level. The selectivity of T. mauritianus in relation to its roost sites implies that preferred roosts are a limited resource, and as such, conservation actions should focus on protecting roost sites and the woodland bats rely on.


Assuntos
Quirópteros/fisiologia , Planejamento de Cidades/métodos , Florestas , Comportamento de Nidação/fisiologia , Desenvolvimento Sustentável , Animais , Malaui , Urbanização
2.
Philos Trans R Soc Lond B Biol Sci ; 370(1667)2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25780239

RESUMO

Artificial light at night is a major feature of anthropogenic global change and is increasingly recognized as affecting biodiversity, often negatively. On a global scale, newer technology white lights are replacing orange sodium lights to reduce energy waste. In 2009, Cornwall County Council (UK) commenced replacement of existing low-pressure sodium (LPS) high intensity discharge (HID) street lights with new Phillips CosmoPolis white ceramic metal halide street lights to reduce energy wastage. This changeover provided a unique collaborative opportunity to implement a before-after-control-impact field experiment to investigate the ecological effects of newly installed broad spectrum light technologies. Activity of the bat species Pipistrellus pipistrellus, P. pygmaeus and Nyctalus/Eptesicus spp. was significantly higher at metal halide than LPS lights, as found in other studies of bat activity at old technology (i.e. mercury vapour) white light types. No significant difference was found in feeding attempts per bat pass between light types, though more passes overall were recorded at metal halide lights. Species-specific attraction of bats to the metal halide lights could have cascading effects at lower trophic levels. We highlight the need for further research on possible ecosystem-level effects of light technologies before they are installed on a wide scale.


Assuntos
Quirópteros/fisiologia , Comportamento Alimentar/efeitos da radiação , Insetos/efeitos da radiação , Iluminação/instrumentação , Animais , Monitoramento Ambiental , Poluição Ambiental , Insetos/fisiologia , Especificidade da Espécie
3.
Conserv Biol ; 27(6): 1324-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24112694

RESUMO

The Convention on Biological Diversity has catalyzed worldwide awareness of threats to biological diversity and stimulated global conservation strategies. These have led to national and international legislation and have generated debate about the most effective conservation actions. Under the EU Habitats Directive, all member states are obliged to establish a system for strict protection of species listed in Annex IV(a), which includes all bats. In England, this obligation has resulted in legislation that allows for derogation from strict protection under license, provided activities are undertaken to mitigate any potential negative effects on bat numbers. We used an evidence-based approach to assess the cost-effectiveness of mitigation strategies and the English bat-derogation licensing process as a whole. We analyzed data from 389 bat derogation licenses issued in England from 2003 to 2005 relating to 1776 roosts and 15 species to determine the nature and extent of development and mitigation activities and their effects on bats. Overall the effects of licensed activities on roosts were negative. Despite the level of protection afforded to bats, the majority (68%) of roosts for which derogation licenses were issued were destroyed. There were species-specific differences in the probability of roosts being destroyed, and impacts on roosts did not reflect a species' conservation status. Information provided by licensees was inadequate and inconsistent. Most licensees (67%) failed to submit postdevelopment reports, and postdevelopment monitoring was conducted at only 19% of sites. Despite a minimum of £4.13 million spent on mitigation structures for bats from 2003 to 2005, it was unclear whether the licensing process meets EU obligations. On the basis of our results, we believe there is a need to overhaul the licensing process, to establish a comprehensive, standardized postdevelopment monitoring system, and to demonstrate that mitigation is commensurate with Britain's legal obligations. Mitigando el Efecto del Desarrollo sobre los Murciélagos en Inglaterra con Licencias de Derogación.


Assuntos
Comportamento Animal , Quirópteros/fisiologia , Conservação dos Recursos Naturais/legislação & jurisprudência , Animais , Espécies em Perigo de Extinção , Inglaterra , Especificidade da Espécie
4.
Curr Biol ; 19(13): 1123-7, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19540116

RESUMO

Anthropogenic disturbance is a major cause of worldwide declines in biodiversity. Understanding the implications of this disturbance for species and populations is crucial for conservation biologists wishing to mitigate negative effects. Anthropogenic light pollution is an increasing global problem, affecting ecological interactions across a range of taxa and impacting negatively upon critical animal behaviors including foraging, reproduction, and communication (for review see). Almost all bats are nocturnal, making them ideal subjects for testing the effects of light pollution. Previous studies have shown that bat species adapted to foraging in open environments feed on insects attracted to mercury vapor lamps. Here, we use an experimental approach to provide the first evidence of a negative effect of artificial light pollution on the commuting behavior of a threatened bat species. We installed high-pressure sodium lights that mimic the intensity and light spectra of streetlights along commuting routes of lesser horseshoe bats (Rhinolophus hipposideros). Bat activity was reduced dramatically and the onset of commuting behavior was delayed in the presence of lighting, with no evidence of habituation. These results demonstrate that light pollution may have significant negative impacts upon the selection of flight routes by bats.


Assuntos
Comportamento Animal/fisiologia , Quirópteros , Cidades , Voo Animal , Luz , Meios de Transporte , Animais , Conservação dos Recursos Naturais , Ecolocação , Ecossistema , Humanos , Distribuição Aleatória , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...