Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 96(6): 1430-1440, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28719286

RESUMO

AbstractMalaria-endemic countries have to decide how much of their limited resources for vector control to allocate toward implementing long-lasting insecticidal nets (LLINs) versus indoor residual spraying (IRS). To help the Mozambique Ministry of Health use an evidence-based approach to determine funding allocation toward various malaria control strategies, the Global Fund convened the Mozambique Modeling Working Group which then used JANUS, a software platform that includes integrated computational economic, operational, and clinical outcome models that can link with different transmission models (in this case, OpenMalaria) to determine the economic value of vector control strategies. Any increase in LLINs (from 80% baseline coverage) or IRS (from 80% baseline coverage) would be cost-effective (incremental cost-effectiveness ratios ≤ $114/disability-adjusted life year averted). However, LLIN coverage increases tend to be more cost-effective than similar IRS coverage increases, except where both pyrethroid resistance is high and LLIN usage is low. In high-transmission northern regions, increasing LLIN coverage would be more cost-effective than increasing IRS coverage. In medium-transmission central regions, changing from LLINs to IRS would be more costly and less effective. In low-transmission southern regions, LLINs were more costly and less effective than IRS, due to low LLIN usage. In regions where LLINs are more cost-effective than IRS, it is worth considering prioritizing LLIN coverage and use. However, IRS may have an important role in insecticide resistance management and epidemic control. Malaria intervention campaigns are not a one-size-fits-all solution, and tailored approaches are necessary to account for the heterogeneity of malaria epidemiology.


Assuntos
Mosquiteiros Tratados com Inseticida/economia , Inseticidas/farmacologia , Malária/prevenção & controle , Animais , Anopheles/efeitos dos fármacos , Análise Custo-Benefício , Humanos , Insetos Vetores/parasitologia , Resistência a Inseticidas , Inseticidas/economia , Malária/economia , Controle de Mosquitos/economia , Moçambique , Sensibilidade e Especificidade
2.
MMWR Morb Mortal Wkly Rep ; 64(30): 826-31, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26247436

RESUMO

BACKGROUND: Treatments for health care-associated infections (HAIs) caused by antibiotic-resistant bacteria and Clostridium difficile are limited, and some patients have developed untreatable infections. Evidence-supported interventions are available, but coordinated approaches to interrupt the spread of HAIs could have a greater impact on reversing the increasing incidence of these infections than independent facility-based program efforts. METHODS: Data from CDC's National Healthcare Safety Network and Emerging Infections Program were analyzed to project the number of health care-associated infections from antibiotic-resistant bacteria or C. difficile both with and without a large scale national intervention that would include interrupting transmission and improved antibiotic stewardship. As an example, the impact of reducing transmission of one antibiotic-resistant infection (carbapenem-resistant Enterobacteriaceae [CRE]) on cumulative prevalence and number of HAI transmission events within interconnected groups of health care facilities was modeled using two distinct approaches, a large scale and a smaller scale health care network. RESULTS: Immediate nationwide infection control and antibiotic stewardship interventions, over 5 years, could avert an estimated 619,000 HAIs resulting from CRE, multidrug-resistant Pseudomonas aeruginosa, invasive methicillin-resistant Staphylococcus aureus (MRSA), or C. difficile. Compared with independent efforts, a coordinated response to prevent CRE spread across a group of inter-connected health care facilities resulted in a cumulative 74% reduction in acquisitions over 5 years in a 10-facility network model, and 55% reduction over 15 years in a 102-facility network model. CONCLUSIONS: With effective action now, more than half a million antibiotic-resistant health care-associated infections could be prevented over 5 years. Models representing both large and small groups of interconnected health care facilities illustrate that a coordinated approach to interrupting transmission is more effective than historical independent facilitybased efforts. IMPLICATIONS FOR PUBLIC HEALTH: Public health-led coordinated prevention approaches have the potential to more completely address the emergence and dissemination of these antibiotic-resistant organisms and C. difficile than independent facility-based efforts.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Infecção Hospitalar/prevenção & controle , Farmacorresistência Bacteriana , Antibacterianos/uso terapêutico , Infecções Bacterianas/epidemiologia , Clostridioides difficile/efeitos dos fármacos , Infecção Hospitalar/epidemiologia , Instalações de Saúde , Humanos , Estados Unidos/epidemiologia
3.
BMC Public Health ; 13: 940, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24103508

RESUMO

BACKGROUND: Mathematical and computational models provide valuable tools that help public health planners to evaluate competing health interventions, especially for novel circumstances that cannot be examined through observational or controlled studies, such as pandemic influenza. The spread of diseases like influenza depends on the mixing patterns within the population, and these mixing patterns depend in part on local factors including the spatial distribution and age structure of the population, the distribution of size and composition of households, employment status and commuting patterns of adults, and the size and age structure of schools. Finally, public health planners must take into account the health behavior patterns of the population, patterns that often vary according to socioeconomic factors such as race, household income, and education levels. RESULTS: FRED (a Framework for Reconstructing Epidemic Dynamics) is a freely available open-source agent-based modeling system based closely on models used in previously published studies of pandemic influenza. This version of FRED uses open-access census-based synthetic populations that capture the demographic and geographic heterogeneities of the population, including realistic household, school, and workplace social networks. FRED epidemic models are currently available for every state and county in the United States, and for selected international locations. CONCLUSIONS: State and county public health planners can use FRED to explore the effects of possible influenza epidemics in specific geographic regions of interest and to help evaluate the effect of interventions such as vaccination programs and school closure policies. FRED is available under a free open source license in order to contribute to the development of better modeling tools and to encourage open discussion of modeling tools being used to evaluate public health policies. We also welcome participation by other researchers in the further development of FRED.


Assuntos
Controle de Doenças Transmissíveis/métodos , Simulação por Computador , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Modelos Teóricos , Software , Adolescente , Adulto , Idoso , Censos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...