Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 146(10): 770-787, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35938400

RESUMO

BACKGROUND: GATA4 (GATA-binding protein 4), a zinc finger-containing, DNA-binding transcription factor, is essential for normal cardiac development and homeostasis in mice and humans, and mutations in this gene have been reported in human heart defects. Defects in alternative splicing are associated with many heart diseases, yet relatively little is known about how cell type- or cell state-specific alternative splicing is achieved in the heart. Here, we show that GATA4 regulates cell type-specific splicing through direct interaction with RNA and the spliceosome in human induced pluripotent stem cell-derived cardiac progenitors. METHODS: We leveraged a combination of unbiased approaches including affinity purification of GATA4 and mass spectrometry, enhanced cross-linking with immunoprecipitation, electrophoretic mobility shift assays, in vitro splicing assays, and unbiased transcriptomic analysis to uncover GATA4's novel function as a splicing regulator in human induced pluripotent stem cell-derived cardiac progenitors. RESULTS: We found that GATA4 interacts with many members of the spliceosome complex in human induced pluripotent stem cell-derived cardiac progenitors. Enhanced cross-linking with immunoprecipitation demonstrated that GATA4 also directly binds to a large number of mRNAs through defined RNA motifs in a sequence-specific manner. In vitro splicing assays indicated that GATA4 regulates alternative splicing through direct RNA binding, resulting in functionally distinct protein products. Correspondingly, knockdown of GATA4 in human induced pluripotent stem cell-derived cardiac progenitors resulted in differential alternative splicing of genes involved in cytoskeleton organization and calcium ion import, with functional consequences associated with the protein isoforms. CONCLUSIONS: This study shows that in addition to its well described transcriptional function, GATA4 interacts with members of the spliceosome complex and regulates cell type-specific alternative splicing via sequence-specific interactions with RNA. Several genes that have splicing regulated by GATA4 have functional consequences and many are associated with dilated cardiomyopathy, suggesting a novel role for GATA4 in achieving the necessary cardiac proteome in normal and stress-responsive conditions.


Assuntos
Fator de Transcrição GATA4 , Células-Tronco Pluripotentes Induzidas , Processamento Alternativo , Animais , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , RNA/genética , RNA/metabolismo
2.
Circ Res ; 127(12): 1502-1518, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33044128

RESUMO

RATIONALE: Cardiac pacemaker cells (PCs) in the sinoatrial node (SAN) have a distinct gene expression program that allows them to fire automatically and initiate the heartbeat. Although critical SAN transcription factors, including Isl1 (Islet-1), Tbx3 (T-box transcription factor 3), and Shox2 (short-stature homeobox protein 2), have been identified, the cis-regulatory architecture that governs PC-specific gene expression is not understood, and discrete enhancers required for gene regulation in the SAN have not been identified. OBJECTIVE: To define the epigenetic profile of PCs using comparative ATAC-seq (assay for transposase-accessible chromatin with sequencing) and to identify novel enhancers involved in SAN gene regulation, development, and function. METHODS AND RESULTS: We used ATAC-seq on sorted neonatal mouse SAN to compare regions of accessible chromatin in PCs and right atrial cardiomyocytes. PC-enriched assay for transposase-accessible chromatin peaks, representing candidate SAN regulatory elements, were located near established SAN genes and were enriched for distinct sets of TF (transcription factor) binding sites. Among several novel SAN enhancers that were experimentally validated using transgenic mice, we identified a 2.9-kb regulatory element at the Isl1 locus that was active specifically in the cardiac inflow at embryonic day 8.5 and throughout later SAN development and maturation. Deletion of this enhancer from the genome of mice resulted in SAN hypoplasia and sinus arrhythmias. The mouse SAN enhancer also directed reporter activity to the inflow tract in developing zebrafish hearts, demonstrating deep conservation of its upstream regulatory network. Finally, single nucleotide polymorphisms in the human genome that occur near the region syntenic to the mouse enhancer exhibit significant associations with resting heart rate in human populations. CONCLUSIONS: (1) PCs have distinct regions of accessible chromatin that correlate with their gene expression profile and contain novel SAN enhancers, (2) cis-regulation of Isl1 specifically in the SAN depends upon a conserved SAN enhancer that regulates PC development and SAN function, and (3) a corresponding human ISL1 enhancer may regulate human SAN function.


Assuntos
Arritmia Sinusal/metabolismo , Relógios Biológicos , Sequenciamento de Cromatina por Imunoprecipitação , Elementos Facilitadores Genéticos , Frequência Cardíaca , Proteínas com Homeodomínio LIM/metabolismo , Nó Sinoatrial/metabolismo , Fatores de Transcrição/metabolismo , Potenciais de Ação , Animais , Arritmia Sinusal/genética , Arritmia Sinusal/fisiopatologia , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Proteínas com Homeodomínio LIM/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Nó Sinoatrial/fisiopatologia , Fatores de Tempo , Fatores de Transcrição/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Cell Stem Cell ; 25(1): 87-102.e9, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31271750

RESUMO

Ectopic expression of combinations of transcription factors (TFs) can drive direct lineage conversion, thereby reprogramming a somatic cell's identity. To determine the molecular mechanisms by which Gata4, Mef2c, and Tbx5 (GMT) induce conversion from a cardiac fibroblast toward an induced cardiomyocyte, we performed comprehensive transcriptomic, DNA-occupancy, and epigenomic interrogation throughout the reprogramming process. Integration of these datasets identified new TFs involved in cardiac reprogramming and revealed context-specific roles for GMT, including the ability of Mef2c and Tbx5 to independently promote chromatin remodeling at previously inaccessible sites. We also find evidence for cooperative facilitation and refinement of each TF's binding profile in a combinatorial setting. A reporter assay employing newly defined regulatory elements confirmed that binding of a single TF can be sufficient for gene activation, suggesting that co-binding events do not necessarily reflect synergy. These results shed light on fundamental mechanisms by which combinations of TFs direct lineage conversion.


Assuntos
Fator de Transcrição GATA4/metabolismo , Fatores de Transcrição MEF2/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas com Domínio T/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Reprogramação Celular , Montagem e Desmontagem da Cromatina , Epigênese Genética , Fator de Transcrição GATA4/genética , Fatores de Transcrição MEF2/genética , Aprendizado de Máquina , Camundongos , Ligação Proteica , Proteínas com Domínio T/genética , Ativação Transcricional
4.
Circulation ; 135(10): 978-995, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-27834668

RESUMO

BACKGROUND: Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. METHODS: We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. RESULTS: We found that a combination of the transforming growth factor-ß inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-ß and WNT inhibition and was achieved most efficiently with GMT plus myocardin. CONCLUSIONS: Transforming growth factor-ß and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration.


Assuntos
Benzamidas/farmacologia , Reprogramação Celular/efeitos dos fármacos , Dioxóis/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Fatores de Transcrição/metabolismo , Animais , Benzamidas/uso terapêutico , Células Cultivadas , Dioxóis/uso terapêutico , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração/diagnóstico por imagem , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
5.
Cell ; 167(7): 1734-1749.e22, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984724

RESUMO

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.


Assuntos
Fator de Transcrição GATA4/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Cromatina , Elementos Facilitadores Genéticos , Feminino , Coração/crescimento & desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas com Domínio T/genética
6.
Stem Cell Reports ; 1(3): 235-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319660

RESUMO

Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in vitro. Here, we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells, fetal heart, and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming, including sarcomere formation, calcium transients, and action potentials, although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore, we found that transforming growth factor ß signaling was important for, and improved the efficiency of, human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage, and lay the foundation for future refinements in vitro and in vivo.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Linhagem da Célula , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Fibroblastos/metabolismo , Fator de Transcrição GATA4/biossíntese , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Fatores de Transcrição MEF2/biossíntese , Fatores de Transcrição MEF2/genética , Camundongos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Transdução de Sinais , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Transativadores/biossíntese , Transativadores/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...