Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res ; 46(5): 749-758, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307836

RESUMO

BACKGROUND: Impaired decision making, a key characteristic of alcohol dependence (AD), manifests in continuous alcohol consumption despite severe negative consequences. The neural basis of this impairment in individuals with AD and differences with known neural decision mechanisms among healthy subjects are not fully understood. In particular, it is unclear whether the choice behavior among individuals with AD is based on a general impairment of decision mechanisms or is mainly explained by altered value attribution, with an overly high subjective value attributed to alcohol-related stimuli. METHODS: Here, we use a functional magnetic resonance imaging (fMRI) monetary reward task to compare the neural processes of model-based decision making and value computation between AD individuals (n = 32) and healthy controls (n = 32). During fMRI, participants evaluated monetary offers with respect to dynamically changing constraints and different levels of uncertainty. RESULTS: Individuals with AD showed lower activation associated with model-based decision processes in the caudate nucleus than controls, but there were no group differences in value-related neural activity or task performance. CONCLUSIONS: Our findings highlight the role of the caudate nucleus in impaired model-based decisions of alcohol-dependent individuals.


Assuntos
Alcoolismo , Núcleo Caudado , Alcoolismo/diagnóstico por imagem , Núcleo Caudado/diagnóstico por imagem , Tomada de Decisões/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Recompensa
2.
Soc Cogn Affect Neurosci ; 17(7): 683-693, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850226

RESUMO

Studies in decision neuroscience have identified robust neural representations for the value of choice options. However, overall values often depend on multiple attributes, and it is not well understood how the brain evaluates different attributes and integrates them to combined values. In particular, it is not clear whether attribute values are computed in distinct attribute-specific regions or within the general valuation network known to process overall values. Here, we used a functional magnetic resonance imaging choice task in which abstract stimuli had to be evaluated based on variations of the attributes color and motion. The behavioral data showed that participants responded faster when overall values were high and attribute value differences were low. On the neural level, we did not find that attribute values were systematically represented in areas V4 and V5, even though these regions are associated with attribute-specific processing of color and motion, respectively. Instead, attribute values were associated with activity in the posterior cingulate cortex, ventral striatum and posterior inferior temporal gyrus. Furthermore, overall values were represented in dorsolateral and ventromedial prefrontal cortex, and attribute value differences in dorsomedial prefrontal cortex, which suggests that these regions play a key role for the neural integration of attribute values.


Assuntos
Mapeamento Encefálico , Tomada de Decisões , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Córtex Pré-Frontal
4.
Cereb Cortex ; 25(9): 2828-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24770709

RESUMO

Feature attention operates in a spatially global way, with attended feature values being prioritized for selection outside the focus of attention. Accounts of global feature attention have emphasized feature competition as a determining factor. Here, we use magnetoencephalographic recordings in humans to test whether competition is critical for global feature selection to arise. Subjects performed a color/shape discrimination task in one visual field (VF), while irrelevant color probes were presented in the other unattended VF. Global effects of color attention were assessed by analyzing the response to the probe as a function of whether or not the probe's color was a target-defining color. We find that global color selection involves a sequence of modulations in extrastriate cortex, with an initial phase in higher tier areas (lateral occipital complex) followed by a later phase in lower tier retinotopic areas (V3/V4). Importantly, these modulations appeared with and without color competition in the focus of attention. Moreover, early parts of the modulation emerged for a task-relevant color not even present in the focus of attention. All modulations, however, were eliminated during simple onset-detection of the colored target. These results indicate that global color-based attention depends on target discrimination independent of feature competition in the focus of attention.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico , Comportamento de Escolha/fisiologia , Percepção de Cores/fisiologia , Potenciais Evocados/fisiologia , Córtex Visual/fisiologia , Adulto , Análise de Variância , Eletroencefalografia , Feminino , Análise de Fourier , Lateralidade Funcional , Humanos , Magnetoencefalografia , Masculino , Percepção de Movimento/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Campos Visuais , Vias Visuais/fisiologia , Adulto Jovem
5.
Hum Brain Mapp ; 36(4): 1585-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25529748

RESUMO

Patients with striate cortex lesions experience visual perception loss in the contralateral visual field. In few patients, however, stimuli within the blind field can lead to unconscious (blindsight) or even conscious perception when the stimuli are moving (Riddoch syndrome). Using functional magnetic resonance imaging (fMRI), we investigated the neural responses elicited by motion stimulation in the sighted and blind visual fields of eight patients with lesions of the striate cortex. Importantly, repeated testing ensured that none of the patients exhibited blindsight or a Riddoch syndrome. Three patients had additional lesions in the ipsilesional pulvinar. For blind visual field stimulation, great care was given that the moving stimulus was precisely presented within the borders of the scotoma. In six of eight patients, the stimulation within the scotoma elicited hemodynamic activity in area human middle temporal (hMT) while no activity was observed within the ipsilateral lesioned area of the striate cortex. One of the two patients in whom no ipsilesional activity was observed had an extensive lesion including massive subcortical damage. The other patient had an additional focal lesion within the lateral inferior pulvinar. Fiber-tracking based on anatomical and functional markers (hMT and Pulvinar) on individual diffusion tensor imaging (DTI) data from each patient revealed the structural integrity of subcortical pathways in all but the patient with the extensive subcortical lesion. These results provide clear evidence for the robustness of direct subcortical pathways from the pulvinar to area hMT in patients with striate cortex lesions and demonstrate that ipsilesional activity in area hMT is completely independent of conscious perception.


Assuntos
Percepção de Movimento/fisiologia , Transtornos da Percepção/fisiopatologia , Pulvinar/fisiopatologia , Transtornos da Visão/fisiopatologia , Córtex Visual/fisiopatologia , Adulto , Idoso , Conscientização , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Imagem de Tensor de Difusão , Feminino , Lateralidade Funcional , Humanos , Infarto da Artéria Cerebral Posterior/complicações , Infarto da Artéria Cerebral Posterior/patologia , Infarto da Artéria Cerebral Posterior/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtornos da Percepção/etiologia , Transtornos da Percepção/patologia , Estimulação Luminosa/métodos , Pulvinar/patologia , Transtornos da Visão/etiologia , Transtornos da Visão/patologia , Córtex Visual/patologia , Campos Visuais , Vias Visuais/patologia , Vias Visuais/fisiopatologia , Adulto Jovem
6.
BMC Neurosci ; 15: 78, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24947161

RESUMO

BACKGROUND: Graph-based analysis of fMRI data has recently emerged as a promising approach to study brain networks. Based on the assessment of synchronous fMRI activity at separate brain sites, functional connectivity graphs are constructed and analyzed using graph-theoretical concepts. Most previous studies investigated region-level graphs, which are computationally inexpensive, but bring along the problem of choosing sensible regions and involve blurring of more detailed information. In contrast, voxel-level graphs provide the finest granularity attainable from the data, enabling analyses at superior spatial resolution. They are, however, associated with considerable computational demands, which can render high-resolution analyses infeasible. In response, many existing studies investigating functional connectivity at the voxel-level reduced the computational burden by sacrificing spatial resolution. METHODS: Here, a novel, time-efficient method for graph construction is presented that retains the original spatial resolution. Performance gains are instead achieved through data reduction in the temporal domain based on dichotomization of voxel time series combined with tetrachoric correlation estimation and efficient implementation. RESULTS: By comparison with graph construction based on Pearson's r, the technique used by the majority of previous studies, we find that the novel approach produces highly similar results an order of magnitude faster. CONCLUSIONS: Its demonstrated performance makes the proposed approach a sensible and efficient alternative to customary practice. An open source software package containing the created programs is freely available for download.


Assuntos
Algoritmos , Encéfalo/fisiologia , Conectoma/métodos , Compressão de Dados/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Cogn Affect Behav Neurosci ; 14(2): 593-609, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24448735

RESUMO

Response inhibition is an important cognitive-control function that allows for already-initiated or habitual behavioral responses to be promptly withheld when needed. A typical paradigm to study this function is the stop-signal task. From this task, the stop-signal response time (SSRT) can be derived, which indexes how rapidly an already-initiated response can be canceled. Typically, SSRTs range around 200 ms, identifying response inhibition as a particularly rapid cognitive-control process. Even so, it has recently been shown that SSRTs can be further accelerated if successful response inhibition is rewarded. Since this earlier study effectively ruled out differential preparatory (proactive) control adjustments, the reward benefits likely relied on boosted reactive control. Yet, given how rapidly such control processes would need to be enhanced, alternative explanations circumventing reactive control are important to consider. We addressed this question with an fMRI study by gauging the overlap of the brain networks associated with reward-related and response-inhibition-related processes in a reward-modulated stop-signal task. In line with the view that reactive control can indeed be boosted swiftly by reward availability, we found that the activity in key brain areas related to response inhibition was enhanced for reward-related stop trials. Furthermore, we observed that this beneficial reward effect was triggered by enhanced connectivity between task-unspecific (reward-related) and task-specific (inhibition-related) areas in the medial prefrontal cortex (mPFC). The present data hence suggest that reward information can be translated very rapidly into behavioral benefits (here, within ~200 ms) through enhanced reactive control, underscoring the immediate responsiveness of such control processes to reward availability in general.


Assuntos
Encéfalo/fisiologia , Discriminação Psicológica/fisiologia , Inibição Psicológica , Tempo de Reação/fisiologia , Recompensa , Encéfalo/irrigação sanguínea , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Adulto Jovem
8.
J Cogn Neurosci ; 26(1): 28-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23915053

RESUMO

Human observers can readily track up to four independently moving items simultaneously, even in the presence of moving distractors. Here we combined EEG and magnetoencephalography recordings to investigate the neural processes underlying this remarkable capability. Participants were instructed to track four of eight independently moving items for 3 sec. When the movement ceased a probe stimulus consisting of four items with a higher luminance was presented. The location of the probe items could correspond fully, partly, or not at all with the tracked items. Participants reported whether the probe items fully matched the tracked items or not. About half of the participants showed slower RTs and higher error rates with increasing correspondence between tracked items and the probe. The other half, however, showed faster RTs and lower error rates when the probe fully matched the tracked items. This latter behavioral pattern was associated with enhanced probe-evoked neural activity that was localized to the lateral occipital cortex in the time range 170-210 msec. This enhanced response in the object-selective lateral occipital cortex suggested that these participants performed the tracking task by visualizing the overall shape configuration defined by the vertices of the tracked items, thereby producing a behavioral advantage on full-match trials. In a later time range (270-310 msec) probe-evoked neural activity increased monotonically as a function of decreasing target-probe correspondence in all participants. This later modulation, localized to superior parietal cortex, was proposed to reflect the degree of mismatch between the probe and the automatically formed visual STM representation of the tracked items.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Percepção de Movimento/fisiologia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
9.
J Neurosci ; 32(44): 15284-95, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23115167

RESUMO

Feature-based attention is known to operate in a spatially global manner, in that the selection of attended features is not bound to the spatial focus of attention. Here we used electromagnetic recordings in human observers to characterize the spatiotemporal signature of such global selection of an orientation feature. Observers performed a simple orientation-discrimination task while ignoring task-irrelevant orientation probes outside the focus of attention. We observed that global feature-based selection, indexed by the brain response to unattended orientation probes, is composed of separable functional components. One such component reflects global selection based on the similarity of the probe with task-relevant orientation values ("template matching"), which is followed by a component reflecting selection based on the similarity of the probe with the orientation value under discrimination in the focus of attention ("discrimination matching"). Importantly, template matching occurs at ∼150 ms after stimulus onset, ∼80 ms before the onset of discrimination matching. Moreover, source activity underlying template matching and discrimination matching was found to originate from ventral extrastriate cortex, with the former being generated in more anterolateral and the latter in more posteromedial parts, suggesting template matching to occur in visual cortex higher up in the visual processing hierarchy than discrimination matching. We take these observations to indicate that the population-level signature of global feature-based selection reflects a sequence of hierarchically ordered operations in extrastriate visual cortex, in which the selection based on task relevance has temporal priority over the selection based on the sensory similarity between input representations.


Assuntos
Atenção/fisiologia , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Adulto , Mapeamento Encefálico , Córtex Cerebral/citologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Lobo Occipital/citologia , Lobo Occipital/fisiologia , Orientação/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Lobo Temporal/citologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
10.
Cognition ; 125(3): 498-503, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22921189

RESUMO

Reward prospect has been demonstrated to facilitate various cognitive and behavioral operations, particularly by enhancing the speed and vigor of processes linked to approaching reward. Studies in this domain typically employed task regimes in which participants' overt responses are facilitated by prospective rewards. In contrast, we demonstrate here that even the cancellation of a motor response can be accelerated by reward prospect, thus signifying reward-related benefits on restraint rather than approach behavior. Importantly, this facilitation occurred independent of strategy-related adjustments of response speed, which are known to systematically distort the estimation of response-cancellation speed. The fact that motivational factors can indeed facilitate response inhibition is not only relevant for understanding how motivation and response inhibition interact in healthy participants but also for work on various patient groups that display response-inhibition deficits, suggesting that core differences in the ability to inhibit motor responses have to be differentiated from motivational factors.


Assuntos
Inibição Psicológica , Motivação , Recompensa , Adulto , Feminino , Humanos , Masculino , Desempenho Psicomotor , Tempo de Reação
11.
J Neurosci ; 31(13): 4955-61, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21451034

RESUMO

Dopamine release in cortical and subcortical structures plays a central role in reward-related neural processes. Within this context, dopaminergic inputs are commonly assumed to play an activating role, facilitating behavioral and cognitive operations necessary to obtain a prospective reward. Here, we provide evidence from human fMRI that this activating role can also be mediated by task-demand-related processes and thus extends beyond situations that only entail extrinsic motivating factors. Using a visual discrimination task in which varying levels of task demands were precued, we found enhanced hemodynamic activity in the substantia nigra (SN) for high task demands in the absence of reward or similar extrinsic motivating factors. This observation thus indicates that the SN can also be activated in an endogenous fashion. In parallel to its role in reward-related processes, reward-independent activation likely serves to recruit the processing resources needed to meet enhanced task demands. Simultaneously, activity in a wide network of cortical and subcortical control regions was enhanced in response to high task demands, whereas areas of the default-mode network were deactivated more strongly. The present observations suggest that the SN represents a core node within a broader neural network that adjusts the amount of available neural and behavioral resources to changing situational opportunities and task requirements, which is often driven by extrinsic factors but can also be controlled endogenously.


Assuntos
Dopamina/fisiologia , Mesencéfalo/fisiologia , Desempenho Psicomotor/fisiologia , Recompensa , Suporte de Carga/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/fisiologia , Estimulação Luminosa/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...