Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Breath Res ; 7(3): 037102, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23774060

RESUMO

Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p < 0.0001) and arterial beta-hydroxybutyrate (rs = 0.52, p < 0.0001) concentrations. Changes in breath acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.


Assuntos
Acetona/análise , Estado Terminal , Hiperglicemia/diagnóstico , Espectrometria de Massas/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Testes Respiratórios/instrumentação , Desenho de Equipamento , Expiração , Feminino , Humanos , Hiperglicemia/metabolismo , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
2.
J Breath Res ; 5(3): 037107, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21757798

RESUMO

For the 2009 influenza A (H1N1) pandemic, vaccination and infection control were the main modes of prevention. A live attenuated H1N1 vaccine mimics natural infection and works by evoking a host immune response, but currently there are no easy methods to measure such a response. To determine if an immune response could be measured in exhaled breath, exhaled nitric oxide (FE(NO)) and other exhaled breath volatiles using selected ion flow tube mass spectrometry (SIFT-MS) were measured before and daily for seven days after administering the H1N1 2009 monovalent live intranasal vaccine (FluMist®, MedImmune LLC) in nine healthy healthcare workers (age 35 ± 7 years; five females). On day 3 after H1N1 FluMist® administration there were increases in FE(NO) (MEAN±SEM: day 0 15 ± 3 ppb, day 3 19 ± 3 ppb; p < 0.001) and breath isoprene (MEAN±SEM: day 0 59 ± 15 ppb, day 3 99 ± 17 ppb; p = 0.02). MS analysis identified the greatest number of changes in exhaled breath on day 3 with 137 product ion masses that changed from baseline. The exhaled breath changes on day 3 after H1N1 vaccination may reflect the underlying host immune response. However, further work to elucidate the sources of the exhaled breath changes is necessary.


Assuntos
Ar/análise , Testes Respiratórios/métodos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Óxido Nítrico/farmacologia , Vacinas Atenuadas/administração & dosagem , Administração Intranasal , Adulto , Expiração , Feminino , Humanos , Influenza Humana/virologia , Masculino , Espectrometria de Massas , Valores de Referência , Vacinação/métodos
3.
Physiol Meas ; 32(1): 115-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21149927

RESUMO

Non-invasive monitoring of breath ammonia and trimethylamine using Selected-ion-flow-tube mass spectroscopy (SIFT-MS) could provide a real-time alternative to current invasive techniques. Breath ammonia and trimethylamine were monitored by SIFT-MS before, during and after haemodialysis in 20 patients. In 15 patients (41 sessions), breath was collected hourly into Tedlar bags and analysed immediately (group A). During multiple dialyses over 8 days, five patients breathed directly into the SIFT-MS analyser every 30 min (group B). Pre- and post-dialysis direct breath concentrations were compared with urea reduction, Kt/V and creatinine concentrations. Dialysis decreased breath ammonia, but a transient increase occurred mid treatment in some patients. Trimethylamine decreased more rapidly than reported previously. Pre-dialysis breath ammonia correlated with pre-dialysis urea in group B (r(2) = 0.71) and with change in urea (group A, r(2) = 0.24; group B, r(2) = 0.74). In group B, ammonia correlated with change in creatinine (r(2) = 0.35), weight (r(2) = 0.52) and Kt/V (r(2) = 0.30). The ammonia reduction ratio correlated with the urea reduction ratio (URR) (r(2) = 0.42) and Kt/V (r(2) = 0.38). Pre-dialysis trimethylamine correlated with Kt/V (r(2) = 0.21), and the trimethylamine reduction ratio with URR (r(2) = 0.49) and Kt/V (r(2) = 0.36). Real-time breath analysis revealed previously unmeasurable differences in clearance kinetics of ammonia and trimethylamine. Breath ammonia is potentially useful in assessment of dialysis efficacy.


Assuntos
Amônia/análise , Testes Respiratórios/métodos , Metilaminas/análise , Monitorização Fisiológica/métodos , Diálise Renal/métodos , Acetona/análise , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA